您的位置:站长主页 -> 繁星客栈 -> 观星楼 (自然科学论坛) -> 与昌海兄把酒胡侃:磁单极子与对称破缺 | November 22, 2024 |
与昌海兄把酒胡侃:磁单极子与对称破缺
用户登陆 | 刷新 | 本版嘉宾: sage yinhow |
星空浩淼 发表文章数: 1743 |
与昌海兄把酒胡侃:磁单极子与对称破缺 昨天晚上又把昌海兄当年的心得看了一下,还看了他女儿的照片(看来是“双稳态”情形:既象父又象母),结果晚上做梦去了美国昌海兄的家,那情形就象以前去过很多次一样,总之不需任何客套...梦里见到昌海兄坐在那里抱着他女儿,自己却直打瞌睡,我的同情心顿起:唉!一旦有了孩子,时间和精力就更加不够用啊!美国没有计划生育,昌海兄可以多来几个孩子:-) 看到昌海兄当年对磁单极子的质疑,那里凭有一种物理直觉和对美的感悟。如果用粒子物理的名词描述,或许可以更准确地这样说明: 1)如果磁单极子存在并且有自旋,那么它就有内禀电矩,这个电矩因此是一个轴矢量。我们这个世界的电磁场是由电子产生的,因此磁单极子的内禀电矩跟外界电子产生的电场相互作用时,这种作用在空间反射下(P)反号(因为磁单极子的内禀电矩在P下不变,而电子的电场作为极矢量在P下要反号),因此这种作用破坏宇称守恒; 2)同理,磁单极子的内禀电矩跟外界电子产生的电场相互作用时,这种作用在时间反演下(T)反号,因为跟磁单极子的自旋相关的内禀电矩在T下反号,而电子的电场作为极矢量在T下不变),因此这种作用破坏T/CP对称性。 凡是T/CP守恒破坏的地方,好象P守恒单独也要破坏,莫非这是磁单极子搞的鬼? 3)昌海兄认为电磁场方程本来是对称的,引入磁单极子是庸人自扰之。我想可能是这样的:我们这个世界,电是第一性的,是“内禀”的;而磁不是“内禀”的,而是“诱导”的,是电的相对论效应。因此人们希望对偶地,看是否有磁作为第一性而电作为磁的相对论效应的情形。我们这个世界是“类电的”:带电粒子电场E磁场B有:E^2-B^2>0,因此人们希望有个对偶的“类磁世界”,在那里B^2-E^2>0。我从大学二年级开始一直觉得这跟从类时间隔到类空的间隔的变换一样。所以我那时才有时空互换对应电磁互换的想法。 对四维时空矢量,空间分量与时间分量总有一个是“内禀的”(这里把静止时不为零的量称做intrinsic量,而intrinsic量的运动效应产生的量称为induced量),而另一个则是前者的运动效应,是“诱导量”。同理,二阶Lorentz张量的空间分量(ij分量,i,j=1,2,3)和时空分量(0i分量,i=1,2,3)亦如此区别(由张量的定义也能看出)。尽管它们似乎需要对偶,但这可能是一种“美感错觉”,这跟时间和空间的“统一性或平等性错觉”是直接相关的,ij分量与0i分量之间的差异,可以归结到时间和空间之间的差异。如果时空不是闵氏的而是欧氏的,那张量的各个分量都是平等的。 电场和磁场之间的关系,如同平面笛卡儿坐标系的X轴和Y轴之间的关系,如果我们要把X轴看成Y轴,就会发现只能把原来的-Y轴看成X轴;或者说,我们把X轴旋转到原来的Y轴那里,则原来的Y轴就转到原来的负X轴那里。日常生活中的所谓对称,基本上都是镜面反射对称,在那里,我们说A,B对称,指的是A→B且B→A,这相当于正半轴与负半轴之间的那种对称。也许人们倾向于把相差90度的两个东东说成是“对偶”,而相差180度的两个玩意儿说成是“对称”吧:-). 但是自然界只有“相差180度”的那种正反粒子对称,却没有发现“相差90度”的那种电磁对偶(没有发现磁单极子),而且正反粒子对称还解决了量子场论中的因果问题。也许,自然界由于某种原因,总是把“相差90度”的那种电磁对偶变成了“相差180度”的那种正反粒子对称——例如总是需要“转两个90度”,才最后进入我们的观察之中。 持之以恒就是胜利
|
||
星空浩淼 发表文章数: 1743 |
Re: 与昌海兄把酒胡侃:磁单极子与对称破缺 补注: [1]这里所说的“二阶Lorentz张量”专指反对称张量。如果是对称张量,例如能量动量张量,则只有00分量是“内禀的”,0i(i0)分量是“诱导的”,而ij分量则是混合的。一般张量可以写成对称与反对称之和。 [2]用笛卡儿平面坐标系的X轴和Y轴之间的位置关系来比喻电场E和磁场B之间的那种对偶关系: E→B且B→-E,它不同于用同一坐标轴的正半轴和负半轴之间的位置关系所比方的正反粒子之间的那种对称:N→-N且-N→N。 当然如果用虚时间坐标,则电场E和磁场B之间的那种对偶关系表达为:E→icB且icB→E,这跟前面正反粒子之间的那种对称N→-N且-N→N相比,虚数对应90度“相差”,而-1对应180度“相差”。 [3]人们为了解释实验上发现的CP/T破缺,目前正在用实验测量电子的“内禀电矩”,因为电子没有其他的多余自由度,所以这种内禀电矩的极化方向只能与电子自旋方向一致——这也是L.D.Landau认为它能破坏CP/T对称性的关键。 本人有其他考虑,比如电子自旋张量的时空分量使得电子有电矩,但这种电矩属于磁矩的相对论效应——正如电子自旋张量的时空分量是纯空间分量的相对论效应一样。电子的这种电矩与它的磁矩方向不必一致,并且不破坏CP/T守恒。 换句话说,一方面,目前已知电子的磁矩是“内禀量”(即静止电子的磁矩不为零),而电矩则是它的相对论效应,是“诱导量”。它们与外界电磁场作用,其作用的Hamiltonian不破坏CP/T对称性。另一方面,人们为了解释实验上发现的CP/T破缺,假定电子另外还存在作为“内禀量”(即静止时不为零)的电矩,由于电子有四维自旋张量,所以电子存在与之对应的相对论效应——磁矩,即这里的磁矩则是一种诱导量。但是由于电子没有更多的自由度,只好认为这种内禀电矩极化方向仍然与电子的自旋(自旋张量的纯空间分量)方向一致,从而能引起CP/T破缺。 昌海兄可以看到,这是类似于寻找电磁对偶的一种情形,但是又没有对偶彻底,因为电子的自旋在这里始终充当特殊角色,没有让自旋张量的ij分量与0i分量也对偶起来(如果也对偶起来,则得不到CP/T破缺的结论。 但是根据我在楼顶的分析,人们这种办法其实就跟假定存在自旋1/2的磁单极有些等效,而且后者这里没有这么别扭。 这两个帖子虽然是“胡侃”,还真希望昌海兄认真聊一回,这样也才对得起你过去对磁单极的诸多思考。:-) 也希望大家参与讨论! 持之以恒就是胜利
|
||
西门吹牛 发表文章数: 469 |
Re: 与昌海兄把酒胡侃:磁单极子与对称破缺 星空兄每次给的话题都是一个小系统化的、有相对独立性的东西,可惜我不能在这里谈多少,因为你的话题我都近水楼台先熟悉,而且我们之间没有太多的互补性。 我也几次看过昌海兄主页上的东西,差不多是看自己偶像的东西(◎※☆〓→:-))。我这会儿也很想知道昌海兄现在对过去思考过的问题的看法。 我发现学理论物理的,好象都在选择量子引力啊宇宙学什么的(至少在这里是这样),对于量子场论、粒子物理和凝聚态物理方面的,则谈得少。可能每个少年都会不约而同地选择量子引力或宇宙学吧,但如果他更晚些选择,可能就不同了。这个星空兄都这样经历过,最开始想“献身”引力量子化,学超弦什么的(我那时在国外,帮他复印了8本原著,结果现在那些书在睡大头觉)。如果不是生活经历鬼使神差,他现在可能也就成了“流形”、“拓扑”不离口的人,就跟现在的轩轩一样:-)。 一舞剑气动四方,天下英雄莫能挡 形踪飘忽疑无影,冷面郎君傲雪霜
|
||
轩轩 发表文章数: 1352 |
Re: 与昌海兄把酒胡侃:磁单极子与对称破缺 有磁荷是可以的,电磁对偶转动一下就没有了。 磁单极子这样的东西,跟拓扑很有关系啊,现在这样的文章一大堆啊。 顺便拜见西门大官人,原来您就是给星空哥寄书的那哥们哦:)有机会要请他给我引见一下您,可以吗?:) http://zhangxuanzhong.blogone.net 我的主页 (2004-06-01 13:58:27) 轩轩 super star
|
||
可见光 发表文章数: 421 |
Re: 与昌海兄把酒胡侃:磁单极子与对称破缺 TO 轩哥: 我想舅舅的帖子主要不是在讨论磁单极的传统理论问题,而是在讨论磁单极的存在可能会带来什么影响吧。 一个磁单极可以俘获一个同位旋为1/2的玻色子(即一个SU(2)二重态的玻色子),从而产生一个内禀自旋为1/2的拓扑孤粒子,尽管这时候并不存在狄拉克场。磁单极把同位旋转变成自旋,这种现象只有在量子理论中发生。 我记得好象有文献上说,也可以反过来,把磁单极看成一般粒子,而此时电子就成为拓扑孤粒子。是不是这样哦?! 西门官人(哈哈...)脾气很怪,跟一般人都搞不来,又喜欢挑刺,这也不顺眼那也不咋地,真不知道我舅舅是怎样“吃住”他的。说实话,我过去一直很讨厌他,即使现在印象也没有改变很多...呜呜呜! 你看不到我的眼泪,因为我在水里
|
||
卢昌海 发表文章数: 1617 |
Re: 与昌海兄把酒胡侃:磁单极子与对称破缺 谢谢星空兄。 我当年发现我在“有关磁荷的几点思考 (续)”的第三节“磁荷造成的不对称性”中提到的结果时的确十分吃惊,因为物理现象(而不是对物理现象的描述)竟取决于我们对左右旋法则的约定,这在我看来是不可接受的。但后来我发现其实人们早就知道这一结果了,只不过没有用这么直接的方法来显示而已。别人用的术语是:磁单极是赝标粒子,或磁单极的内禀宇称是负的。:-) 当时我的感慨是在经典物理上简直要插根针都难。说起这个,我还想起中学后期我读了 Landau 的《力学》,其中用作用量原理推导非相对论质点动力学的若干结论给我留下极为深刻的印象,于是我便把它推广到了相对论性,当时觉得十分兴奋,直到后来读到 Laudau 的《场论》,发现他老人家早就这么做了。:-) 磁单极在经典电动力学中是十分人为的东西,即便加上量子力学,除了 Dirac 量子化条件外也很难推出更具体的东西来。不过在 non-Abelian 规范理论中磁单极的出现有很大的必然性,尤其是对于丛单连通规范群破缺到标准模型对称群的大统一模型,磁单极作为孤立子解是必定存在的。不过这些当然远不是我当年所知道的。:-) 宠辱不惊,看庭前花开花落 去留无意,望天空云卷云舒
|
||
星空浩淼 发表文章数: 1743 |
Re: 与昌海兄把酒胡侃:磁单极子与对称破缺 呵呵,谢谢昌海兄的回答,也谢谢轩轩的回答。 如果磁单极只能是赝标粒子,从而自旋为零的话,我上面所所说的引起CP/T破缺现象就不存在(除非可可提到的量子力学现象使得磁单极有自旋1/2,并且能因此获得内禀电矩)。 “当时我的感慨是在经典物理上简直要插根针都难” 唉,是啊!现在我就是到处找针插,我担心不但是经典物理上,而且在整个标准模型内都插不进针——难怪现在的人要么搞引力量子化方面的,要么搞凝聚态物理。搞应用物理离不开实验,但在中国实验也是条件所限(本人动手能力很差,呵呵),有时候想着干脆去一门心思挣钱得了。 不过应用科学有一个特点:在理论那里没有任何了不起的、早就弄清楚了的东西,在应用科学那里只要实际地发现了,就好象完全是一个新发现一样,能引起轰动,甚至能拿个炸药奖(比如Bose-Einstein凝聚)。应用科学那里往往是无休止的近似,七拼八凑去迎合实验结果,那里的理论很烦琐,没有理论物理那种理想化的美。能够带来技术实际应用,就是搞应用科学的最大成功。自然科学应用于实际的过程,不太严格地说,是利用各种物理自由度的过程。 我估计到昌海兄当年必定有许多重复他人的经历,只是到后来,随着知识突飞猛进,就少了。:-) 不过还是可以写出来让大家分享。昌海兄当年能够看到Landau的书,是一种幸福。我最近几年才有他的书,却已经没有时间看了,买在那儿做备用。Landau和Feynman,真是绝顶的天才啊! 持之以恒就是胜利
|
||
卢昌海 发表文章数: 1617 |
Re: 与昌海兄把酒胡侃:磁单极子与对称破缺 刚才有事,写得比较匆忙。再补充几句。 星空兄梦境中的我好像太凄惨了吧,以后要多做好梦才是啊。:-) 几个小孩我是万万不敢要的(否则星空兄的梦境就要成真了) 。。。 我当年对经典电动力学中引进磁单极的做法最不满意的是名义上追求对称性,但在实际操作时却仍对电荷和磁荷作不同的处理,且一般教材连提都不提这种不对称性,有一种糊弄人的感觉。不过象星空兄所提的把电磁对称性和时空对称性联系在一起,起码在类比意义上还是可以的,因为时空也正是有些对称,却不完全对称,有几分象引进磁单极后的电磁理论。经典电动力学中的磁单极理论的局限性是经典电磁理论对磁单极的约束太弱,很难得到具体的结果(除了一些离散对称性及 Dirac 量子化条件外)。 总体来说,如果磁单极存在,我倾向于相信它们不是纯电磁起源的,它们很可能是某些 non-Abelian 规范理论破缺的产物。 ==================== 顺便也“把酒胡侃”一下可见光 MM 的问题,即在什么情况下磁单极和电荷的地位可能会反过来?这是电磁对偶性的现代版。 在某些对称性自发破缺的规范理论(比如SU(2)破缺为U(1)的规范理论)中磁单极作为孤立子出现,所带磁荷为 g,半径约为 1/ve(v 为渐进 Higgs 场真空期待值的大小);而带电粒子(W 粒子)作为场的基本激发态出现,所带电荷为 e,被视为点粒子。对于现实世界的电荷来说,磁荷 g 比电荷 e 大两个数量级,因此磁荷是强耦合的孤立子,电荷则是弱耦合的基本激发态。 但是如果我们考虑规范理论的强耦合区域,情况就大不相同了。这时 e 很大,而 g 很小(Dirac 条件在作祟),因此电荷间的耦合变得很强,而磁荷间的耦合变得很弱。与此同时磁荷的半径 1/ve 将变得很小,越来越接近点粒子,相反电荷随着耦合的增强却被越来越复杂的虚粒子云所包围,变得越来越远离点粒子。这些迹象都表明在强耦合下电荷与磁荷的物理表现几乎在互换!受此启发物理学家们提出了一个猜测,即当耦合常数很大时,也许存在一个与原理论对偶的理论,在其中磁荷以场的基本激发态的方式出现,而电荷反而成为孤立子。这就是现代规范场论中的电磁对偶性。 可惜的是寻找一个规范理论的对偶理论是一件极其困难的工作,目前的研究大都只限于超对称理论(尤其是某些 N=2 及 N=4 的超对称规范理论),即使对于那些理论,对偶性也没有被完全证明。 以后有时间我来写一个有关磁单极及电磁对偶的系列,更详细地叙述这些东东。:-) 宠辱不惊,看庭前花开花落 去留无意,望天空云卷云舒
|
||
星空浩淼 发表文章数: 1743 |
Re: 与昌海兄把酒胡侃:磁单极子与对称破缺 我很赞同昌海兄对磁单极的总体看法,也非常感谢昌海兄的详细解答!不光是我和可可长见识,不少在这里潜水的朋友也受益(有些朋友应该冒出来参与讨论才对啊:-))! 看你一讲解,我想起E.Witten的对偶理论(我知道的不多)。强烈希望你能象你所说的,将来系统地写一个有关磁单极及电磁对偶的系列,我想这也是其他所有人期待的! 持之以恒就是胜利
|
||
可见光 发表文章数: 421 |
Re: 与昌海兄把酒胡侃:磁单极子与对称破缺 对于“类电”(电场E磁场B)情形:E^2-B^2>0,当时空间隔从类时间隔变换到类空间隔时,它就变成“类磁”情形:B^2-E^2>0。这个结论,好象在昌海大哥提到的徐建军老师编的《电动力学》的习题里面有。 你看不到我的眼泪,因为我在水里
|
||
yinhow 发表文章数: 727 |
Re: 与昌海兄把酒胡侃:磁单极子与对称破缺 期待昌海兄的大作!! 看了各位的论述, 有两个小问题: 1, 磁荷俘获带有同位旋的粒子, 相互作用如何具体写出来? 2, 其他规范势,在其他空间, 是否有类似磁单极的"粒子"?
|
||
西门吹牛 发表文章数: 469 |
Re: 与昌海兄把酒胡侃:磁单极子与对称破缺 Re yinhow兄: 可以看文献例如:PRL36,1116(1976);PRL36,1119(1976)。 一舞剑气动四方,天下英雄莫能挡 形踪飘忽疑无影,冷面郎君傲雪霜
|
||
yinhow 发表文章数: 727 |
Re: 与昌海兄把酒胡侃:磁单极子与对称破缺 谢谢西门兄. 我没想通的是作为作为磁单极的U(1)规范群和同位旋的SU(2)是如何联系起来的. 还没看到原文, 只看到摘要, 机制又是哪个"对称性自发破缺". CY流形的产生机制是倒过来, 把自旋联络(spin connection)镶嵌到规范势中(gauge potential). 但为什么要这么做, 我还没明白. 感叹之一:没看到原文原因是没权限下载或没有ID, PASSWORD. I have a dream that I have a superID by which I can download every article.
|
||
stefanzhang 发表文章数: 83 |
Re: 与昌海兄把酒胡侃:磁单极子与对称破缺 关于磁单极子我曾经有一个猜想,不过没有深入考虑下去。
|
||
yinhow 发表文章数: 727 |
Re: 与昌海兄把酒胡侃:磁单极子与对称破缺 说几句题外话, 星空兄提到Landau和Feynman的教材, 昌海兄的学习生涯,不禁想到以前看到过的一本武侠小书, 故事情节完全和其他的不一样, 其他的是抢一本武林密籍, 抢到后找深山野林, 独自修炼, 几年后武功天下第一, 杀了仇人, 做了盟主. 这位主人公得到后, 大出巨资, 复印数以万计,凡武林人士人手一侧, 共同学习,提高人民体质. 当今的linux, 奇迹,国外的私人科学基金,所做的也是功德无量.此为感叹之二.
|
||
sage 发表文章数: 1125 |
Re: 与昌海兄把酒胡侃:磁单极子与对称破缺 如果磁单极只能是赝标粒子,从而自旋为零的话,我上面所所说的引起CP/T破缺现象就不存在(除非可可提到的量子力学现象使得磁单极有自旋1/2,并且能因此获得内禀电矩)。 I think this might be referring to the fact that in Super Yang-Mills theories, monopole is part of the super-multiplet. Therefore, they should have fermionic 'partners'.
|
||
卢昌海 发表文章数: 1617 |
Re: 与昌海兄把酒胡侃:磁单极子与对称破缺 In super-Yang-Mills theories, monopoles can gain spin from fermionic zero modes. I will explain more when I get the time to write a series of introductionary articles on this topic. :-) 呵呵,再过若干小时就要启程了,这是走之前的最后一贴。到了杭州再来客栈和大家相聚!:-) 宠辱不惊,看庭前花开花落 去留无意,望天空云卷云舒
|
||
星空浩淼 发表文章数: 1743 |
Re: 与昌海兄把酒胡侃:磁单极子与对称破缺 热烈欢迎sage兄归来!你不来,昌海兄一人很孤独,来科技论坛比原来少多了:-)。这里需要你们两个坐镇。我们其他人主要是参与讨论、学习和凑热闹的。大家还可以再介绍一些人进来,这里就热闹些,讨论的话题多些,相互学习的机会也多些。 持之以恒就是胜利
|
||
sage 发表文章数: 1125 |
Re: 与昌海兄把酒胡侃:磁单极子与对称破缺 In super-Yang-Mills theories, monopoles can gain spin from fermionic zero modes. I will explain more when I get the time to write a series of introductionary articles on this topic. :-) 呵呵,再过若干小时就要启程了,这是走之前的最后一贴。到了杭州再来客栈和大家相聚!:-) great. I forgot you worked on this before....
|