您的位置:站长主页 -> 繁星客栈 -> 观星楼 (自然科学论坛) -> 是谁第一次用量子场论的方法计算了宇宙的真空能? | November 1, 2024 |
是谁第一次用量子场论的方法计算了宇宙的真空能?
用户登陆 | 刷新 | 本版嘉宾: sage yinhow |
轩轩 发表文章数: 1352 |
是谁第一次用量子场论的方法计算了宇宙的真空能? 然后发现比实验观测大10的120次方的量级??? 实验是怎么测量出真空能的?? 我无知到了只懂相对论了。 http://zhangxuanzhong.blog.edu.cn/ 《相对论通俗演义》 i will love you till the null infinity.
|
||
追忆 发表文章数: 693 |
Re: 是谁第一次用量子场论的方法计算了宇宙的真空能? Drace? 后来,终于在眼泪中明白:有些人一旦错过就不再 ........ 有些机会一旦错过也不会再从来....
|
||
sage 发表文章数: 1125 |
Re: 是谁第一次用量子场论的方法计算了宇宙的真空能? >然后发现比实验观测大10的120次方的量级??? ============================================ it does not need a calculation. it just need some dimensional analysis. vacuum energy is E^4. without anything to protect it, it should be really \Lambda^4 where Lambda is the cut-off. if you take the cut-off to be quantum gravity scale which is planck scale, you get vac energy to be M_planck^4. (I think one of my early articles on modification of gravity discussed this). 实验是怎么测量出真空能的?? 1) red-shift of supernova seems to suggest that the expansion of universe is accelerating. 2) universe seems to be flat from CMB data (i.e., we are at critical density). matter appear to have 30% of the critical density. the other 70% must come from vac energy.
|
||
追忆 发表文章数: 693 |
Re: 是谁第一次用量子场论的方法计算了宇宙的真空能? 哦,不好意思,惭愧,将狄拉克的名字给弄错了。 后来,终于在眼泪中明白:有些人一旦错过就不再 ........ 有些机会一旦错过也不会再从来....
|
||
轩轩 发表文章数: 1352 |
Re: 是谁第一次用量子场论的方法计算了宇宙的真空能? 谢谢sage 如何构造planck质量 你的文章号是多少?????假如我们假定在planck尺度和fermi尺度之间还有新的物理,然后在planck尺度之上某处做量子场论的cut off,会不会得到与实验一致的真空能? 我无知到了只懂相对论了。 http://zhangxuanzhong.blog.edu.cn/ 《相对论通俗演义》 i will love you till the null infinity.
|
||
sage 发表文章数: 1125 |
Re: 是谁第一次用量子场论的方法计算了宇宙的真空能? 如何构造planck质量 Newton's law is V=-(m^2/M_P^2) 1/r. this shows that gravity will become strong when m=M_P. therefore, above M_P, wew probably should have quantum gravity. 你的文章号是多少????? you want my published article? I wrote something here long time ago about modification of gravity. it is in my collection. or you want some reference on what I said? 假如我们假定在planck尺度和fermi尺度之间还有新的物理,然后在planck尺度之上某处做量子场论的cut off,会不会得到与实验一致的真空能? I assume the Fermi scale you mention is weak scale which is about 200 GeV. Suppose we have new physics above weak scale, say supersymmetry. then the cutoff we should use is weak-scale. however, (weak scale)^4 is still much much bigger than the cosmological constant. in order to have the correct cosmological constant, we need new physics above 10^-5 eV.
|