您的位置:站长主页 -> 繁星客栈 -> 望月殿 (数学逻辑论坛) -> 有请昌海兄! | November 22, 2024 |
有请昌海兄!
用户登陆 | 刷新 | 本版嘉宾: 萍踪浪迹 季候风 星空与道德 gage |
rainbow 发表文章数: 61 |
有请昌海兄! 初来乍到,有几个问题想请教昌海兄: 1.您提到的有关Riemann猜想的三本英文书籍在哪里可以购到? 2.Riemann猜想成立的情况下,级数∑μ(n)*n^(-s)在Re(s)=1/2上的收敛性状如何? 3.在Riemann猜想成立的情形下,Mertens函数M(x)与x^(-m)(1/2≤m<1)的乘积与第二个问题中的级数能否建立关系? 4.若上述Dirichlet级数的收敛横坐标为1/2(即Riemann猜想成立),那么级数在此直线上是否处处发散?藉此可否对M(x)*x^(-1/2)的上界作出估计? 不揣冒昧,请教昌海兄这些问题,企盼回复。
|
||
卢昌海 发表文章数: 1617 |
Re: 有请昌海兄! Welcome to the forum, rainbow! Did we have any correspondence before? I don't remember ever mentioned 3 reference books on Riemann hypothesis. The book I personally consulted frequently is "Riemann's Zeta Function" by Harold M. Edwards. There are two other books you can check out as well: "The Riemann Zeta-Function: Theory and Applications" by Aleksandar Ivic and "The Theory of the Riemann Zeta-Function" by E.C. Titchmarsh (which makes the count 3, but I don't remember ever recommended them to anyone before :). I don't have answer to your questions, you may search those books and other references to see whether people has done something on those questions, or if you are doing research in this area, you may even try to make it your own work. 宠辱不惊,看庭前花开花落 去留无意,望天空云卷云舒
|
||
rainbow 发表文章数: 61 |
Re: 有请昌海兄! 您的"黎曼猜想漫谈"第十五章何时出炉?
|
||
卢昌海 发表文章数: 1617 |
Re: 有请昌海兄! 前段时间我接受了中青报的约稿,替他们写几篇科普,因此把黎曼猜想和质量的起源暂时搁下了。黎曼猜想第十五章我一有空就会写的,主要介绍 Selberg 的工作。 宠辱不惊,看庭前花开花落 去留无意,望天空云卷云舒
|
||
rainbow 发表文章数: 61 |
Re: 有请昌海兄! 新近了解,在RH及简单零点假设等命题成立的前提下,有猜想lim(x->∞)sup|M(x)|/((lnlnlnx)^(5/4))=B,B是大于零的常数.
|
||
萍踪浪迹 发表文章数: 1983 |
Re: 有请昌海兄! 新近了解,在RH及简单零点假设等命题成立的前提下,有猜想lim(x->∞)sup|M(x)|/((lnlnlnx)^(5/4))=B,B是大于零的常数. ================================================ 类似的由RH成立可以推出的结论早就编出书了:) 漫漫长夜不知晓 日落云寒苦终宵 痴心未悟拈花笑 梦魂飞度同心桥
|