您的位置:站长主页 -> 繁星客栈 -> 望月殿 (数学逻辑论坛) -> Dirichlet Series | November 22, 2024 |
Dirichlet Series
用户登陆 | 刷新 | 本版嘉宾: 萍踪浪迹 季候风 星空与道德 gage |
rainbow 发表文章数: 61 |
Dirichlet Series Here is some pre-knowledge of Dirichlet Series,let's share together: 1.Dirichlet Series has a form of ∑a(n)n^(-s),a(n) is a complex sequence,s=σ+it,σ,t are real numbers; 2.Using Abel's method,we can prove:there exists a real number σ(c)/σ(a),the series converges/absolutely converges when σ>σ(c),it diverges/does not absolutely converge when σ<σ(c)/σ(a);the series represents an analytic function when σ>σ(c)/σ(a);
|
||
yinhow 发表文章数: 727 |
Re: Dirichlet Series 如果a(n)是个周期数列, 譬如说{1,2,3,2,1}, 能得到s=2时候Dirichlet Series的具体值吗? Wealth in sufficient measure grants its possessors the right to their ensuthisams.
|
||
rainbow 发表文章数: 61 |
Re: Dirichlet Series 计算?对多数情况是不可能的.
|
||
rainbow 发表文章数: 61 |
Re: Dirichlet Series 还有一个问题请教各位大侠:级数不收敛但部分和有界,对此类级数有没有一种有效的审敛法则?
|
||
yinhow 发表文章数: 727 |
Re: Dirichlet Series 我也照本宣科, 断章取义: "对于任意的代数数域K上的DIRICHLET 函数, 它在负整数s=-n上所取的值, 与某些微分流形的不变量有关系, 也于代数K-理论中的某些K-群的结构有关系..." "对于全实的数域, 日本人新谷给出了一个初等公式, 但对于一般的数域, 还有很多空白..." [1], 冯可勤, 代数数论, P184 周期系数的DIRICHET 级数在s=n值的计算, 请参考: [2]Evaluation of Dirichlet Series American Mathematical Monthly, December, 2001, P969-971 Wealth in sufficient measure grants its possessors the right to their ensuthisams.
|