您的位置:站长主页 -> 繁星客栈 -> 望月殿 (数学逻辑论坛) -> 一些问题,大家做做 | November 22, 2024 |
一些问题,大家做做
用户登陆 | 刷新 | 本版嘉宾: 萍踪浪迹 季候风 星空与道德 gage |
那一剑的寂寞 发表文章数: 148 |
一些问题,大家做做 从BBS上转来的. 1)Prove that if R is a ring in which a^4=a for every a∈R then R must be commutative. 2)Let R be a ring in which x^3=x for every x∈R. Prove that R is commutative ring. 3)Let R and R' be rings and φ a mapping from R to R' satisfying: (a) φ(x+y)=φ(x)+φ(y) for every x,y∈R (b) φ(xy)=φ(x)φ(y) or φ(y)φ(x). Prove that for all a,b∈R, φ(ab)=φ(a)φ(b) or that, for all a,b∈R, φ(ab)=φ(b)φ(a). (Hint: If a∈R, let W_a={x∈R | φ(ax)=φ(a)φ(x)} and U_a={φ(ax)=φ(x)φ(a)}.) 4)Let R be a commutive ring. If f(x)=a_0+a_1*x+......+a_m*x^m in R[x] is a zero-divisor, prove that there is an element b≠0 in R such that b*a_0 =b*a_1=...=b*a_m=0. 5)If R is a commutative ring with unit element, prove that a_0+a_1*x+... +a_n*x^n in R[x] has an inverse in R[x] (i.e., is a unit in R[x]) if and only if a_0 is a unit in R and a_1,...,a_n are nilpotent elements in R. 6)Considering all symbols of form a_0+a_1*i+a_2*j+a_3*k where a_0,a_1,a_2,a_3 are intergers mod p. (a) Prove that this is a ring with p^4 elements whose only ideals are (0) and the ring itself. (b) Prove that this ring is not a division ring.
|
||
萍踪浪迹 发表文章数: 1983 |
Re: 一些问题,大家做做 抽象代数的习题 找几本习题集就可以解决 这里答起来太费劲且我现在可没有时间 漫漫长夜不知晓 日落云寒苦终宵 痴心未悟拈花笑 梦魂飞度同心桥 ------------------------------------------------- 红叶晚萧萧,长亭酒一瓢 残云归太华,疏雨过中条 树色随山迥,河声入海遥 帝乡明日到,犹自梦渔樵
|
||
一剑断浪 发表文章数: 231 |
Re: 一些问题,大家做做 一开始看到题目,还在想什么问题呢! 看看吧!可没办法,你的那些问题太难! 我都看不懂,谁让自己还没学那么多了! 再看下作者,我就对你的名字非常感兴趣! 那一剑的寂寞——好象再说这个夜晚我很寂寞似的! 谁让我是一剑呢? 呵呵 !我看栈里组成三剑客算了! 也许你刚来不了解,咱们这儿还有个一剑飘红呢! 本想把这些话放在茶室说的, 可没见你在那发过帖子啊! 呵呵!就在这说吧! 人要快乐的活着! 伤心也是带着微笑的眼泪! 我的QQ:285311057 请求验证时请注明:繁星!
|