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ABSTRACT 

Black holes have been a hot topic in recent years partly 
due to the successful detections of gravitational waves 
from pair merges mostly involving black holes. It is 
therefore not too great a surprise that the 2020 Nobel 
Prize in Physics went to black hole researchers: the Royal 
Swedish Academy of Sciences announced on October 
6 2020 that English mathematician and mathematical 
physicist Roger Penrose had been awarded half of the 
prize “for the discovery that black hole formation is a 
robust prediction of the general theory of relativity”; the 
other half of the prize was shared by German astrophysi-
cist Reinhard Genzel and American astronomer Andrea 
Ghez “for the discovery of a supermassive compact object 
at the centre of our galaxy”. In this article, we will give a 
brief introduction to Penrose’s research which, as we will 
see, has a certain unique peculiarity among the achieve-
ments that have won Nobel Prizes in Physics.

INTRODUCTION 

Let’s start, as background, with a quick review of the early 
history of black holes. The origin of the concept of black 
holes is often attributed to English natural philosopher 
John Michell. In 1783, Michell deduced from Newto-
nian gravity that a star with same density as the sun but 
hundreds of times bigger in diameter will have a gravity 
so strong that even light cannot escape. Such a star will 
therefore look “black” or “dark” to observers far away, and 
was quite appropriately called a “dark star” by Michell.

Michell’s “dark star” is fairly simple in terms of both the-
ory and concept. Nowadays, even a high school student 
should be able to deduce without much effort that for a 
star with mass M to become a “dark star”, in terms of New-
tonian gravity its radius must be no greater than 2GM/c2.  
An impressive fact about this result is that 2GM/c2  
happens to be the so-called Schwarzschild radius of the 

simplest (i.e. non-rotating and not charged) black hole in 
the modern sense (namely, according to general relativ-
ity). But despite this impressive equality in radius, the 
modern black hole has little in common with Michell’s  
“dark star”. In fact, even the equality in radius is noth-
ing but a misleading coincidence, since its meaning in 
modern black hole theory is not the measurable distance 
from its center to its surface as in Michell’s “dark star”. 
To quote Penrose himself [6], “the notion of a black hole 
really only arises from the particular features of general 
relativity, and it does not occur in Newtonian theory”.

One might ask: how exactly a black hole “arises from the 
particular features of general relativity”? The answer goes 
back to a German physicist named Karl Schwarzschild. 
In January 1916, shortly before his premature death, and 
less than two months after Einstein published his field 
equation of general relativity, Schwarzschild found an ex-
act solution, now called Schwarzschild’s solution.

General relativity is, in a sense, a theory about spacetime. 
Schwarzschild’s solution describes a particular spacetime 
configuration. This spacetime is spherically symmetric, 
and had two striking features both of which led to math-
ematical difficulties: one occurred at the center of the 
spherical symmetry, and the other occurred on a sphere 
now named the “event horizon”, whose radius is the 
Schwarzschild radius that we have mentioned above. It 
took physicists many years, not without trouble and hesi-
tation, to gradually gain an understanding of these two 
features. It turned out that the feature at the center of 
the spherical symmetry is a truly nasty one, now called a 
“singularity”, and is associated with pathological proper-
ties such as the divergence of spacetime curvature. The 
feature on event horizon, however, reflects nothing but a 
defective choice of coordinate system, and does not pose 
any essential problem.

The singularity and the event horizon are the two ma-
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jor features of black holes. The discovery, therefore, 
of Schwarzschild’s solution in which both features are 
present (and collectively called a Schwarzschild black 
hole) can be more or less treated as a prediction of black 
holes by general relativity — not a robust one though, 
since what is really “predicted” is only the fact that gen-
eral relativity is capable of describing a black hole. But 
Schwarzschild’s solution alone cannot tell us whether 
there exists any real physical process that can lead to ac-
tual black hole formation — without such a process, black 
holes would remain a bizarre theoretical concept without 
physical relevance.

FORMATION OF BLACK HOLE 

So the question now becomes: is there any real physical 
process that can actually produce a black hole? American 
physicist J. Robert Oppenheimer and his student Hartland 
Snyder made some progress towards answering this ques-
tion in 1939. Oppenheimer and Snyder studied the col-
lapse that will inevitably happen when a star runs out of its 
nuclear fuel and no longer has sufficient radiative pressure 
to balance gravity. What they found was: assuming no force 
exists to stop collapse (which is simplistic but turned out to 
be correct for sufficiently large stars), when observed by a 
static observer outside the star, the collapse will slow down 
owing to relativistic effects and eventually freeze when 
approaching the event horizon. Whoever “abhors” black 
holes might be tempted into thinking that black holes can-
not form because of the freeze. But such a freeze tells us 
no more about whether a black hole can form than a video 
tape broken in the middle tells us what can happen after-
wards — it limits what a particular observer can see, but 
not what can actually happen. In fact, Oppenheimer and 
Snyder explicitly showed that when you switch to an ob-
server that collapses with the star (the so-called comoving 
observer), the star will collapse into a singularity in finite 
time and that the event horizon causes no delay.

Does it mean that black hole formation can now be con-
sidered a robust prediction of general relativity? Not yet, 
for both Schwarzschild’s solution and Oppenheimer 
and Snyder’s study relied on a symmetry that cannot be 
strictly realized in the physical world: spherical symmetry. 
In fact, since general relativity is mathematically a highly 
complicated theory, almost all early efforts to find solu-
tions relied on certain types of symmetry. For instance, 
the Kerr solution. which was found by New Zealand math-
ematician Roy Kerr in 1963 and is much more “realistic” 
than Schwarzschild’s solution, relied on axial symmetry — 

a symmetry not as restricted as spherical symmetry but, 
nevertheless, still ideal enough to evade physical reality.

Usually, physicists are quite at ease with the fact that sym-
metries cannot be strictly realized in the physical world, 
not only because they rely on symmetry too much to dis-
miss, but also because it is commonly believed and widely 
validated that minor deviation from strict symmetry will 
only lead to minor discrepancy. But black hole formation 
became an exception, at least to some physicists, since 
it involves a singularity which will cause a breakdown 
of physical laws on which the very careers of physicists 
depend. No stake is higher than that, which makes no 
concept — not even symmetry — not sacrificable in order 
to save the stake. Some physicists, who blamed symmetry, 
therefore decided to tackle the problem by abandon-
ing symmetry, in the hope of eliminating the singularity. 
Prominent Soviet physicists Evgeny Lifshitz and Isaak 
Markovich Khalatnikov were the main proponents of such 
efforts, and at a certain point in the 1960s they believed 
a proof had been obtained showing that the singularity 
would not arise once symmetry had been abandoned.

There are also numerous other doubts regarding singu-
larity and black holes (for which singularity is a main fea-
ture), one of which came from the very person who estab-
lished general relativity: Albert Einstein. But those other 
doubts are much less eloquent. For instance, the doubt 
Einstein himself cast is this: any circular motion around 
a Schwarzschild black hole at radius less than 1.5 times 
the Schwarzschild radius will require a speed greater than 
the speed of light. Since nothing can travel faster than 
the speed of light, black holes — Einstein so concluded 
— must not exist. This argument is surprisingly defective 
since the obvious and correct conclusion of this analysis 
should be: circular motion is not possible at such radius 
around a Schwarzschild black hole rather than black 
holes must not exist, just like, for example, if one cannot 
swim circularly (without been sucked in) near the center 
of a whirlpool, it doesn’t mean whirlpools cannot exist.

Eloquent or not, it was in such an atmosphere of numer-
ous doubts, that in the autumn of 1964, thirty-three year 
old Roger Penrose became deeply involved in black hole 
research.

PENROSE AND BLACK HOLES 

Penrose completed a mathematics major and then ob-
tained a Ph.D. in the field of geometry from St John’s 
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College, Cambridge University in 1957. But even when 
he was still a mathematics student, Penrose developed 
interests in physics and astronomy under the influence 
of English astronomer Fred Hoyle and physicist Dennis 
Sciama. In fact, Hoyle and Sciama’s influence is much 
more than a mere generic influence on interests. Hoyle 
attracted Penrose into his earliest research in astronomy; 
and it is in Sciama’s circle that Penrose eventually met an 
excellent collaborator. Stephen Hawking, whose Ph.D. 
research was under Sciama’s guidance and whose fame 
would skyrocket.

Both of these influences contributed to the achievement 
that eventually resulted in Penrose’s Nobel Prize. Hoyle 
was a major advocate of the so-called steady-state model, 
which is a cosmological model that was abandoned by 
most astronomers in the 1960s when it was strongly dis-
favored by observations. In the 1950s when Penrose was 
influenced by Hoyle, however, the steady-state model still 
enjoyed certain popularity. But even then, while obser-
vational evidence was still lacking, an issue that Penrose 
called “an apparent contradiction between the steady-
state model and standard general relativity” had already 
surfaced. One possible way out of the problem, as some 
cosmologists proposed, was to use a strategy quite similar 
to the one that singularity “deniers” would use, namely, 
to assume that the issue was caused by symmetry, and 
therefore abandoning symmetry would save the day. Pen-
rose was attracted to the steady-state model and was seri-
ous enough to pursue this proposal. The pursuit failed, 
as recalled in Penrose’s book Fashion Faith and Fantasy [6]:

I had wanted to see whether an apparent contradiction between 
the steady-state model and standard general relativity ... might be 
averted by the presence of deviations from the complete symmetry 
that is employed in the usual steady-state picture. By the use of a 
geometrical/topological argument, I had convinced myself that 
such deviations from symmetry could not remove this contradiction.

But the good thing about scientific research is: the value 
of it is not always measured by the success or failure of 
its direct target. In many cases, valuable lessons that led 
to great success came out of research for which the direct 
target failed. Penrose’s study of the steady-state model 
turned out to be one of them, out of which two lessons 
had been learned: one lesson is generic and strategic, 
namely abandoning symmetry may not always make a 
difference dramatic enough to save the day; the other 
lesson is more specific and tactical and showed that the 
geometrical/topological argument that was rather novel 

in general relativity research at the time had the power 
to achieve something traditional methods could hardly 
reach. These lessons paved a road for Penrose when his 
interest switched to black hole research, and the road 
drastically differed from that of Lifshitz and Khalatnikov’s  
in both its goal and method.

What attracted Penrose into the area of black hole re-
search, however, was not his research on the steady-state 
model, but related to “quasars” (quasi-stellar objects) 
which were discovered in 1963. These novel astronomi-
cal objects shine a hundred times brighter than a typical 
galaxy but their size is only a millionth of that of the lat-
ter (which makes it “quasi-stellar”, hence its name), and 
therefore must be very compact. Preliminary analysis in-
dicated that a giant black hole swallowing matter (includ-
ing stars) was the most probable mechanism that could 
fuel so compact and energetic an object. This therefore 
provided indirect but strong support for the existence of 
black holes. Since everyone knows that symmetry cannot 
be exact, therefore if black holes exist, we must show they 
exist under generic conditions. This, together with the 
lessons learned from the study of the steady-state model, 
attracted Penrose into the area of black hole research 
with the goal of exploring the formation of singularity 
under generic conditions.

This goal is opposite to that of Lifshitz and Khalatnikov, 
and the best method to pursue it is to use the “geo-
metrical/topological argument” which was the second 
lesson Penrose learned from the study of the steady-state 
model. The reason for this is simple: since the goal is to 
explore the formation of singularity under generic con-
ditions — especially when there is no symmetry, so that 
properties such as shape and size become pretty much ir-
relevant. Furthermore, since general relativity is a highly 
geometric theory, the formation of singularity is a highly 
geometric problem about spacetime structure, and we all 
know that if properties such as shape and size are irrele-
vant in a geometric problem, what remains to be relevant 
will be topological properties, which thus justifies the use 
of the “geometrical/topological argument”.

But even with the goal set, and the method well within 
the technical expertise of Penrose, whose Ph.D. research 
was in the area of geometry, reaching the goal is still 
highly challenging, and requires certain inspiration. 
Although the coming and going of inspiration is often 
difficult to trace, in the particular case of Penrose’s black 
hole research, we are lucky enough to have the master’s  
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own reminiscences which he described in his popular 
book The Emperor’s New Mind and on other occasions.

According to these reminiscences, Penrose got his inspi-
ration late in the autumn of 1964, shortly after he started 
his black hole research. One day in that autumn, Penrose 
and mathematical physicist Ivor Robinson were walking 
along the street, chatting about something completely 
unrelated to black hole research, and were stopped by a 
red signal while crossing a side road. It was at that mo-
ment that an idea occurred to Penrose. Later that day, 
after Robinson left, Penrose returned to his office and 
(to quote his own words) “finally brought to mind the 
thought that I had had while crossing the street — a 
thought which had momentarily elated me by provid-
ing the solution to the problem that had been milling 
around at the back of my head!”

The thought that he so elaborately brought to mind and 
provided “the solution to the problem” is related to a 
concept called “closed trapped surface” whose funda-
mental property is: all light-like geodesics orthogonal to 
it — regardless of inward or outward propagation — are 
converging. To put it in layman’s terms, it is a two di-
mensional closed surface from which light cannot escape. 
Equipped with this inspiration, and after several months’ 
diligent work, Penrose proved an important result in 
1965 that we will call the Penrose singularity theorem, 
and which is the earliest version of a class of theorems 
now called “singularity theorems”.

SINGULARITY THEOREMS 

What are singularity theorems? Or, to be more specific, 
what is the Penrose singularity theorem? Briefly speak-
ing, the Penrose singularity theorem is a theorem that 
leads to the formation of a singularity by assuming three 
types of premises — a logical structure shared by all sin-
gularity theorems. Among the three types of premises, 
the first asserts certain generic properties of matter; the 
second imposes certain restrictions on spacetime itself; 
and the third assumes certain conditions of matter dis-
tribution. With these premises, Penrose proved that the 
formation of a singularity is generic and inevitable, and 
does not rely on symmetry.

In that same year (i.e. 1965) when Penrose proved his 
singularity theorem, the world’s leading general relativ-
ity experts — including Lifshitz and Khalatnikov for 
whom permission to travel outside the Soviet Union was 

obtained not without trouble — gathered in London for 
the Third Conference on General Relativity and Gravita-
tion. This is the stage on which Penrose’s affirmative re-
sult and Lifshitz and Khalatnikov’s negative result on the 
formation of singularities collided for the first time.

The “collision” didn’t yield any immediate outcome, but 
Penrose’s novel “geometrical/topological argument” at-
tracted several young researchers who — in a manner 
similar to Penrose — also had technical strength in ge-
ometry and topology. Among them were the American 
theoretical physicist Robert Geroch and Sciama’s gradu-
ate student Hawking, who we mentioned before; both 
were only twenty-three years old at the time. In the next 
several years, Penrose, Hawking, Geroch and others pro-
posed and proved more versions of the singularity theo-
rem, which differed from each other mainly in the details 
of the premises. Through the blooming of these singu-
larity theorems, the existence of singularities and black 
holes gained more and more theoretical acceptance.

This trend finally shook Lifshitz and Khalatnikov. In Sep-
tember 1969, American physicist Kip Thorne visited the 
Soviet Union [8]. Lifshitz took the opportunity to hand a 
manuscript to him, and asked him to submit it to Physical 
Review Letters which Soviet scientists could not do them-
selves at that time without first going through a lengthy 
security clearance process. In the manuscript, Lifshitz 
acknowledged the error of his and Khalatnikov’s earlier 
work that let them to believe that singularities could not 
exist without symmetry.

This concession by Lifshitz and Khalatnikov removed the 
main objection among physicists regarding the existence 
of singularities and black holes in general relativity (care-
ful readers might have noticed, in the domain of exis-
tence, we sometimes used singularity and black hole in a 
somewhat exchangeable way, as if a result about one can 
automatically extend to the other. The relation between 
the two is actually a quite subtle one; interested readers 
may consult, for instance, [3]). But the Penrose singular-
ity theorem itself still has a weak point that needs to be 
— and can be — addressed. As we mentioned before, 
singularity theorems all assumed three types of premises. 
Among them, the generic properties of matter basically 
asserts that the energy density must be non-negative, 
which is widely considered valid in classical physics; the 
conditions of matter distribution are known to be realiz-
able in physical processes such as the collapse of suffi-
ciently large stars. But the restriction imposed on spacet-
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ime itself by the Penrose singularity theorem turns out to 
be too theoretical and too strong. In fact, this restriction, 
which requires the existence of a so-called Cauchy hyper-
surface, is so theoretical that it is hard to think of any ob-
servational evidence that can possibly verify it, and it is so 
strong that it was actually violated by a counter-example 
posted by Penrose himself in a paper published in the 
same year (i.e. 1965) as his singularity theorem paper.

This weak point in the Penrose singularity theorem 
was no secret to researchers in that area. Hawking, for 
instance, commented in his autobiography My Brief His-
tory [2] that it is possible that early singularity theorems 
“simply proved that the universe didn’t have a Cauchy 
surface” rather than proved the existence of singularities 
and black holes. Penrose himself later, in a collaborative 
work with Hawking, also admitted that [1] “the assump-
tion of the existence of a global Cauchy hypersurface is 
hard to justify from the standpoint of general relativity”. 
Trying to improve on the Penrose singularity theorem by 
eliminating this weak point was actually a major motiva-
tion behind the multiple versions of singularity theorems 
proposed and proved in those years.

In the end, Penrose and Hawking collaborated on a pa-
per titled “The Singularities of Gravitational Collapse 
and Cosmology”, that laid down a theorem now called 
the Hawking-Penrose singularity theorem, published in 
1970. In this theorem, which covers both black hole sin-
gularity and cosmological singularity, premises are made 
much more realizable. We all know from basic logic that 
for a simple logical deduction to draw a correct conclu-
sion, not only the deduction itself must be valid, but the 
premises must also be valid. Similarly, for a theorem that 
was intended to describe the physical world, a physically 
relevant conclusion relies not only on the mathematical 
correctness of the theorem, but also the physical realiz-
ability of the premises. In this sense, the Hawking-Pen-
rose singularity theorem is physically much more relevant 
than earlier versions of the singularity theorem due to 
its much more realizable premises. Among all singularity 
theorems, if we are to select one that best deserves the 
praise of “the discovery that black hole formation is a ro-
bust prediction of the general theory of relativity” which 
won half of the Nobel Prize in Physics this year, it should 
be the Hawking-Penrose singularity theorem. And it is a 
pity that Stephen Hawking has already passed away — a 
pity both for Hawking and for the history of the Nobel 
Prize.

EPILOGUE 

Let me end this introduction by pointing out a very 
unique peculiarity that distinguishes Penrose’s black 
hole research from not only the other achievements that 
have won the Nobel Prize in Physics, but most other 
physics research in general, namely the singularity theo-
rems Penrose and others proved are very similar to pure 
mathematical theorems, except that these theorems are 
theorems in the framework of general relativity rather than in 
an ordinary mathematical axiomatic system. A singular-
ity theorem merely draws “a robust prediction” based on 
general relativity, in the sense that even if its prediction is 
invalidated by observation, it is most likely general rela-
tivity rather than the singularity theorem that will be in 
trouble. A singularity theorem might become physically 
irrelevant in such cases, but its correctness as a math-
ematical theorem may well remain.

Black holes are astronomical objects, and for this reason 
many have considered this year’s Nobel Prize in Physics as 
yet another case when astronomical research won a phys-
ics prize. But at least for the half prize that goes to Pen-
rose, it is perhaps better considered as a case of mathemati-
cal research winning a physics prize, which is much rarer — 
perhaps completely unique so far, and therefore adds a far 
more colorful chapter in the history of Nobel Prizes.
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