MANIFOLD DESTINY (The New Yorker)

新用户注册 | 用户登陆 | 刷新

Omni


发表文章数: 280
内力值: 263/263
贡献度: 4868
人气: 688

论坛嘉宾学术成员

MANIFOLD DESTINY (The New Yorker) [文章类型: 转载]

http://www.newyorker.com/fact/content/articles/060828fa_fact2

MANIFOLD DESTINY

by SYLVIA NASAR AND DAVID GRUBER

A legendary problem and the battle over who solved it.

Issue of 2006-08-28
Posted 2006-08-21

On the evening of June 20th, several hundred physicists, including a Nobel laureate, assembled in an auditorium at the Friendship Hotel in Beijing for a lecture by the Chinese mathematician Shing-Tung Yau. In the late nineteen-seventies, when Yau was in his twenties, he had made a series of breakthroughs that helped launch the string-theory revolution in physics and earned him, in addition to a Fields Medal—the most coveted award in mathematics—a reputation in both disciplines as a thinker of unrivalled technical power.

Yau had since become a professor of mathematics at Harvard and the director of mathematics institutes in Beijing and Hong Kong, dividing his time between the United States and China. His lecture at the Friendship Hotel was part of an international conference on string theory, which he had organized with the support of the Chinese government, in part to promote the country’s recent advances in theoretical physics. (More than six thousand students attended the keynote address, which was delivered by Yau’s close friend Stephen Hawking, in the Great Hall of the People.) The subject of Yau’s talk was something that few in his audience knew much about: the Poincaré conjecture, a century-old conundrum about the characteristics of three-dimensional spheres, which, because it has important implications for mathematics and cosmology and because it has eluded all attempts at solution, is regarded by mathematicians as a holy grail.

Yau, a stocky man of fifty-seven, stood at a lectern in shirtsleeves and black-rimmed glasses and, with his hands in his pockets, described how two of his students, Xi-Ping Zhu and Huai-Dong Cao, had completed a proof of the Poincaré conjecture a few weeks earlier. “I’m very positive about Zhu and Cao’s work,” Yau said. “Chinese mathematicians should have every reason to be proud of such a big success in completely solving the puzzle.” He said that Zhu and Cao were indebted to his longtime American collaborator Richard Hamilton, who deserved most of the credit for solving the Poincaré. He also mentioned Grigory Perelman, a Russian mathematician who, he acknowledged, had made an important contribution. Nevertheless, Yau said, “in Perelman’s work, spectacular as it is, many key ideas of the proofs are sketched or outlined, and complete details are often missing.” He added, “We would like to get Perelman to make comments. But Perelman resides in St. Petersburg and refuses to communicate with other people.”

For ninety minutes, Yau discussed some of the technical details of his students’ proof. When he was finished, no one asked any questions. That night, however, a Brazilian physicist posted a report of the lecture on his blog. “Looks like China soon will take the lead also in mathematics,” he wrote.

Grigory Perelman is indeed reclusive. He left his job as a researcher at the Steklov Institute of Mathematics, in St. Petersburg, last December; he has few friends; and he lives with his mother in an apartment on the outskirts of the city. Although he had never granted an interview before, he was cordial and frank when we visited him, in late June, shortly after Yau’s conference in Beijing, taking us on a long walking tour of the city. “I’m looking for some friends, and they don’t have to be mathematicians,” he said. The week before the conference, Perelman had spent hours discussing the Poincaré conjecture with Sir John M. Ball, the fifty-eight-year-old president of the International Mathematical Union, the discipline’s influential professional association. The meeting, which took place at a conference center in a stately mansion overlooking the Neva River, was highly unusual. At the end of May, a committee of nine prominent mathematicians had voted to award Perelman a Fields Medal for his work on the Poincaré, and Ball had gone to St. Petersburg to persuade him to accept the prize in a public ceremony at the I.M.U.’s quadrennial congress, in Madrid, on August 22nd.

The Fields Medal, like the Nobel Prize, grew, in part, out of a desire to elevate science above national animosities. German mathematicians were excluded from the first I.M.U. congress, in 1924, and, though the ban was lifted before the next one, the trauma it caused led, in 1936, to the establishment of the Fields, a prize intended to be “as purely international and impersonal as possible.”

However, the Fields Medal, which is awarded every four years, to between two and four mathematicians, is supposed not only to reward past achievements but also to stimulate future research; for this reason, it is given only to mathematicians aged forty and younger. In recent decades, as the number of professional mathematicians has grown, the Fields Medal has become increasingly prestigious. Only forty-four medals have been awarded in nearly seventy years—including three for work closely related to the Poincaré conjecture—and no mathematician has ever refused the prize. Nevertheless, Perelman told Ball that he had no intention of accepting it. “I refuse,” he said simply.

发表时间: 2006-08-23, 13:39:19 个人资料

Omni


发表文章数: 280
内力值: 263/263
贡献度: 4868
人气: 688

论坛嘉宾学术成员

Re: MANIFOLD DESTINY (The New Yorker) [文章类型: 转载]

Over a period of eight months, beginning in November, 2002, Perelman posted a proof of the Poincaré on the Internet in three installments. Like a sonnet or an aria, a mathematical proof has a distinct form and set of conventions. It begins with axioms, or accepted truths, and employs a series of logical statements to arrive at a conclusion. If the logic is deemed to be watertight, then the result is a theorem. Unlike proof in law or science, which is based on evidence and therefore subject to qualification and revision, a proof of a theorem is definitive. Judgments about the accuracy of a proof are mediated by peer-reviewed journals; to insure fairness, reviewers are supposed to be carefully chosen by journal editors, and the identity of a scholar whose pa-per is under consideration is kept secret. Publication implies that a proof is complete, correct, and original.

By these standards, Perelman’s proof was unorthodox. It was astonishingly brief for such an ambitious piece of work; logic sequences that could have been elaborated over many pages were often severely compressed. Moreover, the proof made no direct mention of the Poincaré and included many elegant results that were irrelevant to the central argument. But, four years later, at least two teams of experts had vetted the proof and had found no significant gaps or errors in it. A consensus was emerging in the math community: Perelman had solved the Poincaré. Even so, the proof’s complexity—and Perelman’s use of shorthand in making some of his most important claims—made it vulnerable to challenge. Few mathematicians had the expertise necessary to evaluate and defend it.

After giving a series of lectures on the proof in the United States in 2003, Perelman returned to St. Petersburg. Since then, although he had continued to answer queries about it by e-mail, he had had minimal contact with colleagues and, for reasons no one understood, had not tried to publish it. Still, there was little doubt that Perelman, who turned forty on June 13th, deserved a Fields Medal. As Ball planned the I.M.U.’s 2006 congress, he began to conceive of it as a historic event. More than three thousand mathematicians would be attending, and King Juan Carlos of Spain had agreed to preside over the awards ceremony. The I.M.U.’s newsletter predicted that the congress would be remembered as “the occasion when this conjecture became a theorem.” Ball, determined to make sure that Perelman would be there, decided to go to St. Petersburg.

Ball wanted to keep his visit a secret—the names of Fields Medal recipients are announced officially at the awards ceremony—and the conference center where he met with Perelman was deserted. For ten hours over two days, he tried to persuade Perelman to agree to accept the prize. Perelman, a slender, balding man with a curly beard, bushy eyebrows, and blue-green eyes, listened politely. He had not spoken English for three years, but he fluently parried Ball’s entreaties, at one point taking Ball on a long walk—one of Perelman’s favorite activities. As he summed up the conversation two weeks later: “He proposed to me three alternatives: accept and come; accept and don’t come, and we will send you the medal later; third, I don’t accept the prize. From the very beginning, I told him I have chosen the third one.” The Fields Medal held no interest for him, Perelman explained. “It was completely irrelevant for me,” he said. “Everybody understood that if the proof is correct then no other recognition is needed.”

Proofs of the Poincaré have been announced nearly every year since the conjecture was formulated, by Henri Poincaré, more than a hundred years ago. Poincaré was a cousin of Raymond Poincaré, the President of France during the First World War, and one of the most creative mathematicians of the nineteenth century. Slight, myopic, and notoriously absent-minded, he conceived his famous problem in 1904, eight years before he died, and tucked it as an offhand question into the end of a sixty-five-page paper.

Poincaré didn’t make much progress on proving the conjecture. “Cette question nous entraînerait trop loin” (“This question would take us too far”), he wrote. He was a founder of topology, also known as “rubber-sheet geometry,” for its focus on the intrinsic properties of spaces. From a topologist’s perspective, there is no difference between a bagel and a coffee cup with a handle. Each has a single hole and can be manipulated to resemble the other without being torn or cut. Poincaré used the term “manifold” to describe such an abstract topological space. The simplest possible two-dimensional manifold is the surface of a soccer ball, which, to a topologist, is a sphere—even when it is stomped on, stretched, or crumpled. The proof that an object is a so-called two-sphere, since it can take on any number of shapes, is that it is “simply connected,” meaning that no holes puncture it. Unlike a soccer ball, a bagel is not a true sphere. If you tie a slipknot around a soccer ball, you can easily pull the slipknot closed by sliding it along the surface of the ball. But if you tie a slipknot around a bagel through the hole in its middle you cannot pull the slipknot closed without tearing the bagel.

Two-dimensional manifolds were well understood by the mid-nineteenth century. But it remained unclear whether what was true for two dimensions was also true for three. Poincaré proposed that all closed, simply connected, three-dimensional manifolds—those which lack holes and are of finite extent—were spheres. The conjecture was potentially important for scientists studying the largest known three-dimensional manifold: the universe. Proving it mathematically, however, was far from easy. Most attempts were merely embarrassing, but some led to important mathematical discoveries, including proofs of Dehn’s Lemma, the Sphere Theorem, and the Loop Theorem, which are now fundamental concepts in topology.

By the nineteen-sixties, topology had become one of the most productive areas of mathematics, and young topologists were launching regular attacks on the Poincaré. To the astonishment of most mathematicians, it turned out that manifolds of the fourth, fifth, and higher dimensions were more tractable than those of the third dimension. By 1982, Poincaré’s conjecture had been proved in all dimensions except the third. In 2000, the Clay Mathematics Institute, a private foundation that promotes mathematical research, named the Poincaré one of the seven most important outstanding problems in mathematics and offered a million dollars to anyone who could prove it.

“My whole life as a mathematician has been dominated by the Poincaré conjecture,” John Morgan, the head of the mathematics department at Columbia University, said. “I never thought I’d see a solution. I thought nobody could touch it.”

发表时间: 2006-08-23, 13:43:47 个人资料

Omni


发表文章数: 280
内力值: 263/263
贡献度: 4868
人气: 688

论坛嘉宾学术成员

Re: MANIFOLD DESTINY (The New Yorker) [文章类型: 转载]

Grigory Perelman did not plan to become a mathematician. “There was never a decision point,” he said when we met. We were outside the apartment building where he lives, in Kupchino, a neighborhood of drab high-rises. Perelman’s father, who was an electrical engineer, encouraged his interest in math. “He gave me logical and other math problems to think about,” Perelman said. “He got a lot of books for me to read. He taught me how to play chess. He was proud of me.” Among the books his father gave him was a copy of “Physics for Entertainment,” which had been a best-seller in the Soviet Union in the nineteen-thirties. In the foreword, the book’s author describes the contents as “conundrums, brain-teasers, entertaining anecdotes, and unexpected comparisons,” adding, “I have quoted extensively from Jules Verne, H. G. Wells, Mark Twain and other writers, because, besides providing entertainment, the fantastic experiments these writers describe may well serve as instructive illustrations at physics classes.” The book’s topics included how to jump from a moving car, and why, “according to the law of buoyancy, we would never drown in the Dead Sea.”

The notion that Russian society considered worthwhile what Perelman did for pleasure came as a surprise. By the time he was fourteen, he was the star performer of a local math club. In 1982, the year that Shing-Tung Yau won a Fields Medal, Perelman earned a perfect score and the gold medal at the International Mathematical Olympiad, in Budapest. He was friendly with his teammates but not close—“I had no close friends,” he said. He was one of two or three Jews in his grade, and he had a passion for opera, which also set him apart from his peers. His mother, a math teacher at a technical college, played the violin and began taking him to the opera when he was six. By the time Perelman was fifteen, he was spending his pocket money on records. He was thrilled to own a recording of a famous 1946 performance of “La Traviata,” featuring Licia Albanese as Violetta. “Her voice was very good,” he said.

At Leningrad University, which Perelman entered in 1982, at the age of sixteen, he took advanced classes in geometry and solved a problem posed by Yuri Burago, a mathematician at the Steklov Institute, who later became his Ph.D. adviser. “There are a lot of students of high ability who speak before thinking,” Burago said. “Grisha was different. He thought deeply. His answers were always correct. He always checked very, very carefully.” Burago added, “He was not fast. Speed means nothing. Math doesn’t depend on speed. It is about deep.”

At the Steklov in the early nineties, Perelman became an expert on the geometry of Riemannian and Alexandrov spaces—extensions of traditional Euclidean geometry—and began to publish articles in the leading Russian and American mathematics journals. In 1992, Perelman was invited to spend a semester each at New York University and Stony Brook University. By the time he left for the United States, that fall, the Russian economy had collapsed. Dan Stroock, a mathematician at M.I.T., recalls smuggling wads of dollars into the country to deliver to a retired mathematician at the Steklov, who, like many of his colleagues, had become destitute.

Perelman was pleased to be in the United States, the capital of the international mathematics community. He wore the same brown corduroy jacket every day and told friends at N.Y.U. that he lived on a diet of bread, cheese, and milk. He liked to walk to Brooklyn, where he had relatives and could buy traditional Russian brown bread. Some of his colleagues were taken aback by his fingernails, which were several inches long. “If they grow, why wouldn’t I let them grow?” he would say when someone asked why he didn’t cut them. Once a week, he and a young Chinese mathematician named Gang Tian drove to Princeton, to attend a seminar at the Institute for Advanced Study.

For several decades, the institute and nearby Princeton University had been centers of topological research. In the late seventies, William Thurston, a Princeton mathematician who liked to test out his ideas using scissors and construction paper, proposed a taxonomy for classifying manifolds of three dimensions. He argued that, while the manifolds could be made to take on many different shapes, they nonetheless had a “preferred” geometry, just as a piece of silk draped over a dressmaker’s mannequin takes on the mannequin’s form.

Thurston proposed that every three-dimensional manifold could be broken down into one or more of eight types of component, including a spherical type. Thurston’s theory—which became known as the geometrization conjecture—describes all possible three-dimensional manifolds and is thus a powerful generalization of the Poincaré. If it was confirmed, then Poincaré’s conjecture would be, too. Proving Thurston and Poincaré “definitely swings open doors,” Barry Mazur, a mathematician at Harvard, said. The implications of the conjectures for other disciplines may not be apparent for years, but for mathematicians the problems are fundamental. “This is a kind of twentieth-century Pythagorean theorem,” Mazur added. “It changes the landscape.”

In 1982, Thurston won a Fields Medal for his contributions to topology. That year, Richard Hamilton, a mathematician at Cornell, published a paper on an equation called the Ricci flow, which he suspected could be relevant for solving Thurston’s conjecture and thus the Poincaré. Like a heat equation, which describes how heat distributes itself evenly through a substance—flowing from hotter to cooler parts of a metal sheet, for example—to create a more uniform temperature, the Ricci flow, by smoothing out irregularities, gives manifolds a more uniform geometry.

Hamilton, the son of a Cincinnati doctor, defied the math profession’s nerdy stereotype. Brash and irreverent, he rode horses, windsurfed, and had a succession of girlfriends. He treated math as merely one of life’s pleasures. At forty-nine, he was considered a brilliant lecturer, but he had published relatively little beyond a series of seminal articles on the Ricci flow, and he had few graduate students. Perelman had read Hamilton’s papers and went to hear him give a talk at the Institute for Advanced Study. Afterward, Perelman shyly spoke to him.

“I really wanted to ask him something,” Perelman recalled. “He was smiling, and he was quite patient. He actually told me a couple of things that he published a few years later. He did not hesitate to tell me. Hamilton’s openness and generosity—it really attracted me. I can’t say that most mathematicians act like that.

“I was working on different things, though occasionally I would think about the Ricci flow,” Perelman added. “You didn’t have to be a great mathematician to see that this would be useful for geometrization. I felt I didn’t know very much. I kept asking questions.”

发表时间: 2006-08-23, 13:47:05 个人资料

神霄散吏


发表文章数: 17
内力值: 91/91
贡献度: 347
人气: 52

Re: MANIFOLD DESTINY (The New Yorker) [文章类型: 原创]

应该不是全部内容吧。

一片幽心卧紫霞,松梢凝翠夕阳斜。
尚无心绪听啼鸟,那有工夫扫落花。

发表时间: 2006-08-23, 15:14:31 个人资料

yippie


发表文章数: 87
内力值: 136/136
贡献度: 277
人气: 71

Re: MANIFOLD DESTINY (The New Yorker) [文章类型: 原创]

http://www.newyorker.com/fact/content/articles/060828fa_fact2

it's very gossipy & 1-sided.

i now have much better respect to yau than before. at least he trys to take care of his disciples, xixixi

发表时间: 2006-08-23, 22:04:53 个人资料

fineall


发表文章数: 36
内力值: 108/108
贡献度: 134
人气: 60

Re: MANIFOLD DESTINY (The New Yorker) [文章类型: 原创]

逐句完毕,谢谢链接.
太长太长, 当做阅读联系, Perelman敬佩,Hamilton可惜.
看来天才也要努力才行,不能只想到玩啊~

发表时间: 2006-08-24, 03:08:38 个人资料

TYTLI


发表文章数: 23
内力值: 93/93
贡献度: 97
人气: 18

学术成员

Re: MANIFOLD DESTINY (The New Yorker) [文章类型: 混合]

事实上,这篇报道很客观公正。
觉得不客观的人只是以前只听到一个声音。
谎言总有破的一天。

一个人有可能短时间内欺骗所有人,有可能长时间内欺骗一部分人,但绝不可能永久欺骗所有人。

发表时间: 2006-08-24, 03:18:08 个人资料

yippie


发表文章数: 87
内力值: 136/136
贡献度: 277
人气: 71

Re: MANIFOLD DESTINY (The New Yorker) [文章类型: 原创]

gimme a break.

the authors framed the article w/ chinese vs perelman in the first paragraph. this appears to be more a shock-dj type of gossiping than an article worthy of new yorker. however, i knew that new yorker is a jewish leaning magazine. of course it may not be fair.

its purpose is attention getting and attract more letters/articles. yau should lose in american public eyes. tian looks like a little pet in the article.

it is quite obvious why jews are so much better at helping each in academia whilst chinese just can't help kicking each other to gain their little spotlight.

发表时间: 2006-08-24, 11:14:37 个人资料
您尚未登陆 | 用户登陆