您的位置: 站长主页 -> 繁星客栈 -> 望月殿 -> 代数几何的简单问题 | November 22, 2024 |
代数几何的简单问题
论坛嘉宾: 萍踪浪迹 gauge 季候风 |
kanex 发表文章数: 447
|
代数几何的简单问题 [文章类型: 原创]
遇到一个问题,请问谁能说说class number, picard group, line bundle之间的联系,谢谢。
Récoltes et semailles
|
||
道德 发表文章数: 56
|
Re: 代数几何的简单问题 [文章类型: 原创]
1.固定一个scheme X, 则有一个一一对应。(see Hartshorne)
line bundles over X <--> invertible sheaves on X 在代数几何中,很多人更喜欢用sheaf这个概念,因为vector bundle 的范畴不是Abel范畴,但是加上coherent sheaf以后,就可以定义任何映射的kernel和cokernel了。 2. X 上所有line bundles的同构类形成一个群Picard group,乘法定义为张量积。 3. 如果X是仿射的(affine), 假设X=Spec A, A是一个环(ring)。则X上的locally free sheaf 和A上的projective module之间有一个一一对应。在这个对应之下,invertible sheaves 给出A上的秩为1的projective module M. 如果A是整环,令K为分式域。则M与K的张量积(over A)是K上一维向量空间,即同构于K. 好久没有碰代数了,如果我没记错的话,这样的模就是分式理想(fractional idea)。如果是对的,证明其实很容易。 4.关于Class number的现代解释,强烈推荐Milnor的代数K理论前面的章节。他可以通过projective module以及K_0群来定义。他和line bundle的关系就是通过上面几条建立的。一般来说,Picard group 是几何的观点,对一般的scheme可以定义。Class group 是代数的观点,它仅仅对数域有定义(或Dedekind domain)。对函数域的情形,一般用几何的观点更方便。 或者说如果环A是一个域k上的代数,则考虑的是几何学。
|
||
kanex 发表文章数: 447
|
Re: 代数几何的简单问题 [文章类型: 原创]
Actually, when we say "line bundles", do we mean holomorphic line bundles in ag?
vector bundle的范畴不是Abel范畴 ============================== Could you name some non-abelian operations defined on vector bundles? 他可以通过projective module以及K_0群来定义。 ============================== Please express this with more details, and in your favourite way. Dont worry if I dont understand it. 一般来说,Picard group 是几何的观点,对一般的scheme可以定义。Class group 是代数的观点,它仅仅对数域有定义(或Dedekind domain)。对函数域的情形,一般用几何的观点更方便。 或者说如果环A是一个域k上的代数,则考虑的是几何学。 ============================== Yes, I think working with geometry is better, as it is more "flexible". Many constructions in commutative algebra are so mysterious, I can't "really" understand them. Récoltes et semailles
|
||
道德 发表文章数: 56
|
Re: 代数几何的简单问题 [文章类型: 原创]
Actually, when we say "line bundles", do we mean holomorphic line bundles in ag?
--------Yes, in AG, the main interest is holomorphic object, however, in complex geometry, we should start with continous one and apply D bar operator to get holomorphic object. But in "intrinsic" algebraic geometry, every thing is holomorphic(to be precise,algebraic). vector bundle的范畴不是Abel范畴 ============================== Could you name some non-abelian operations defined on vector bundles? --------Let f: E --> F be a homomorphism between two vector bundles E and F. The kernel and cokernel is in general not a vector bundle. So we can not define kernel and cokernel for a general homomorphism in the category of vector bundles. They exist only when the fiber map of f_s: E_s --> F_s have same rank. However, the kernel and cokernel always exist as coherent sheaves. 他可以通过projective module以及K_0群来定义。 ============================== Please express this with more details, and in your favourite way. Dont worry if I dont understand it. --------I read the book of milnor a long time ago, and I didn't work in that area. So I almost forgot all the details. The thing I am sure is, you need to understand the following concepts: 1.Dedekind domain 2.ideal 3.ideal class group 4.projective module 5.Grothedieck group K_0 I recommend to pick up the book of milnor and read the first chapter or maybe the second too.
|
||
kanex 发表文章数: 447
|
Re: 代数几何的简单问题 [文章类型: 原创]
Let f: E --> F be a homomorphism between two vector bundles E and F. The kernel and cokernel is in general not a vector bundle.
=============================== Good point. Does this have something to do with the failure of exactness in some sequence? 1.Dedekind domain 2.ideal 3.ideal class group 4.projective module 5.Grothedieck group K_0 =============================== En, I know a little on all of these, although I think asking other ppl is always much quicker than learning by books [for my purpose]. Maybe I will consider someone else. Thank you! Récoltes et semailles
|
您尚未登陆 | 用户登陆 |