Kanex写点吧
Morita等价到底是什么?
我问了一些人,似乎不是你满意的答案
您的位置: 站长主页 -> 繁星客栈 -> 望月殿 -> 讨论下Morita等价和倾斜理论 | November 24, 2024 |
讨论下Morita等价和倾斜理论
论坛嘉宾: 萍踪浪迹 gauge 季候风 |
Zhangshizhuo 发表文章数: 71
|
讨论下Morita等价和倾斜理论 [文章类型: 原创]
Kanex写点吧
Morita等价到底是什么? 我问了一些人,似乎不是你满意的答案 Sheaf and Scheme
|
||
kanex 发表文章数: 447
|
Re: 讨论下Morita等价和倾斜理论 [文章类型: 原创]
我一窍不通。谢谢。
like a great ring of pure and endless light
|
||
那一剑的寂寞 发表文章数: 193
|
Re: 讨论下Morita等价和倾斜理论 [文章类型: 混合]
The terminology "Morita equivalence" appears in various contexts: C*
algebras, string theory, ring theory,etc.Two rings A and B are Morita equivalent if there exist bimodules X and Y that are inverses of each other with respect to tensor product. I.e., X is a left A module and a right B module, Y is the other way around, and X tensor_B Y = A Y tensor_A X = B You can use the module X to convert any left B-module to a left A-module, and vice versa for Y. The relation between them establishes that the categories of (left) A-modules and (left) B-modules are equivalent. For example, if A is any ring and M_n(A) is the ring of n x n matrices, then M_n(A) and M_k(A) are Morita equivalent via the bimodules of n x k and k x n matrices. The bimodule structures are given by left and right multiplication. The rings \Z (integers) and \Z[i] (Gaussian integers) are not Morita equivalent. \Z-modules are just abelian groups, and the irreducible ones are \Z/p for primes p. On the other hand, the 9-element \Z[i]-module \Z[i]/3 is irreducible. This module has 8 automorphisms, but no irreducible abelian group has 8 automorphisms since 9 isn't prime. The categories of modules are fundamentally different and hence there is no Morita equivalence. Actually,the term "Morita equivalence" appears also in the Algebraic Geometry and Algebraic group. 天下风云出我辈,一入江湖岁月催;
|
||
Zhangshizhuo 发表文章数: 71
|
Re: 讨论下Morita等价和倾斜理论 [文章类型: 原创]
谁能不能举个例子关于 两个范畴的导出范畴等价,我不了解这个方面.
Sheaf and Scheme
|
您尚未登陆 | 用户登陆 |