陈波
现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。当时的数学家试图从少数公理出发,根据明确给出的演绎规则推导出其他的数学定理,从而把整个数学构造成为一个严格的演绎大厦,然后用某种程序和方法一劳永逸地证明数学体系的可靠性。这需要严格、精确、适用的逻辑工具,因此成为现代逻辑诞生的主要动力。其后果就是20世纪逻辑研究的高度数学化,其表现在于:一是逻辑专注于在数学的形式化过程中提出的问题;二是逻辑采纳了数学的方法论,从事逻辑研究就意味着像数学那样用严格的形式证明去解决问题。由此发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。
那么,21世纪逻辑发展的主要动力来自哪里?我认为,计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理,而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素。例如,选择性地搜集相关的经验证据,在不充分信息的基础上作出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。
实际上,在20世纪中后期,就已经开始了现代逻辑与人工智能(AI)之间的相互融合和渗透。例如,哲学逻辑所研究的许多课题在理论计算机和人工智能中具有重要的应用价值。AI从认知心理学、社会科学以及决策科学中获得了许多资源,但逻辑(包括哲学逻辑)在AI中发挥了特别突出的作用。某些原因促使哲学逻辑家去发展关于非数学推理的理论;基于几乎同样的理由,AI研究者也在进行类似的探索,这两方面的研究正在相互接近、相互借鉴,甚至在逐渐融合在一起。例如,AI特别关心下述课题:效率和资源有限的推理;感知;做计划和计划再认;关于他人的知识和信念的推理;各认知主体之间相互的知识;自然语言理解;知识表示;常识的精确处理;对不确定性的处理,容错推理;关于时间和因果性的推理;解释或说明;对归纳概括以及概念的学习。21世纪的逻辑学也应该关注这些问题,并对它们进行研究。为了做到这一点,逻辑学家们有必要熟悉AI的要求及其相关进展,使其研究成果在AI中具有可应用性。
我认为,至少是21世纪早期,逻辑学应重点关注下述几个领域,并且有可能在这些领域出现具有重大意义的成果:
1.常识推理中的某些弗协调、非单调和容错性因素。AI研究的一个目标就是用机器智能模拟人的智能,它选择各种能反映人的智能特征的问题进行实践,希望能做出各种具有智能特征的软件系统。AI研究基于计算途径,因此要建立具有可操作性的符号模型。一般而言,AI关于智能系统的符号模型可描述为:由一个知识载体(称为知识库KB)和一组加载在KB上的足以产生智能行为的过程(称为问题求解器PS)构成。经过20世纪70年代包括专家系统的发展,AI研究者逐步取得共识,认识到知识在智能系统中力量,即一般的智能系统事实上是一种基于知识的系统,而知识包括专门性知识和常识性知识,前者亦可看做是某一领域内专家的常识。于是,常识问题就成为AI研究的一个核心问题,它包括两个方面:常识表示和常识推理,即如何在人工智能中清晰地表示人类的常识,并运用这些常识去进行符合人类行为的推理。显然,如此建立的常识知识库可能包含矛盾,是不协调的,但这种矛盾或不协调应影响进行合理的推理行为;常识推理还是一种非单调推理,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论;常识推理也是一种可能出错的不精确的推理模式,是在容许有错误知识的情况下进行的推理,简称容错推理。而经典逻辑拒斥任何矛盾,容许从矛盾推出一切命题;并且它是单调的,即承认如上的推理模式:如果p→r,则p∧q→r;或者说,任一理论的定理属于该理论之任一扩张的定理集。因此,在处理常识表示和常识推理时,经典逻辑应该受到限制和修正,并发展出某些非经典的逻辑,如次协调逻辑、非单调逻辑、容错推理等。有观点认为,常识推理的逻辑是次协调逻辑和非单调逻辑的某种结合物,而后者又可看作是对容错推理的简单且基本的情形的一种形式化。
2.归纳以及其他不确定性推理。计算机要成功地模拟人的智能,真正体现出人的智能品质,就必须对各种具有不确定性的推理模式进行研究。这里主要谈一谈对归纳推理和归纳逻辑的研究。“归纳推理”,指一切扩展性推理,它们的结论所断定的超出了其前提所断定的范围,因而前提的真无法保证结论的真,整个推理因此缺乏必然性。休谟提出著名的“归纳问题”,对归纳推理的合理性和归纳逻辑的可能性提出了深刻的质疑,但我认为,(1)归纳是在茫茫宇宙中生存的人类必须采取也只能采取的认知策略,对于人类来说具有实践的必然性。(2)人类有理由从经验的重复中建立某种确实性和规律性,其依据就是确信宇宙中存在某种类似于自然齐一律和客观因果律之类的东西。这一确信是合理的,而用纯逻辑的理由去怀疑一个关于世界的事实性断言则是不合理的,除非这个断言是逻辑矛盾。(3)人类有可能建立起局部合理的归纳逻辑和归纳方法论。并且,归纳逻辑的这种可能性正在计算机科学和人工智能的研究推动下慢慢地演变成现实。恩格斯早就指出,“社会一旦有技术上的需要,则这种需要比十所大学更能把科学推向前进。”有人通过指责现有的归纳逻辑不成熟,得出“归纳逻辑不可能”的结论,他们的推理本身与归纳推理一样,不具有演绎的必然性。(4)人类实践的成功在一定程度上证明了相应的经验知识的真理性,也就在一定程度上证明了归纳逻辑和归纳方法论的力量。有的学者指出,为了在机器的智能模拟中克服对归纳模拟的困难而有所突破,应该将归纳逻辑等有关的基础理论研究与机器学习、不确定推理和神经网络学习模型与归纳学习中已有的成果结合起来。只有这样,才能在已有的归纳学习成果上,在机器归纳和机器发现上取得新的突破和进展。这是一个极有价值且极富挑战性的课题,无疑在21世纪将得到重视并取得进展。