您的位置: 站长主页 -> 繁星客栈 -> 观星楼 -> A note on i\epsilon prescription in QFT. | November 23, 2024 |
A note on i\epsilon prescription in QFT.
论坛嘉宾: sage |
ular 发表文章数: 3
|
A note on i\epsilon prescription in QFT. [文章类型: 原创]
Two point function or Feyman propagator of K-G field
G_2=D_f (x)=\theta(t)D(x)+\theta(-t)D(-x) describe the amplitude of particle propagating from 0 to x on spacetime, which is just to say for the observation we can't distinguish the particle move from 0 to x and the antipaticle move from x to 0 along -t and so we have to take the sum as final result. On how to write G_2 in a single integral which contains a i\epsilon (\epsilon>0 and is infinitesimal), it's merely a mathematical trick. The simplest way is to check D_f(x) on 4-momentum space whether equal to the form in terms of D(x) by calculating the energy integral in the D_f(x), which is essentially the treatment in Peskin's QFT book (here you have to make the choice of countor in order to identify the two expressions, and note that \epsilon^2=0, 2\epsilon E_p shall be taken as \epsilon due to infinitesimal, so p^2-m^2+i\epsilon=(p^0-E_p+i\epsilon)(p^0+E_p-i\epsilon)). You can also take an integral representation of \theta(t), here obviouse we have \theta(t)=\int d\omega e^{i\omega t}/[2\pi i(\omega-i\epsilon)], where the integral contour c=infinite semicircle on upper half plane, t>0 or lower half plane, t<0. This integral indeed equal 1 if t>0 and 0 if t<0. Substituting above integral, it's directly to get the usual propagator as an integral on 4-momentum space (take D(x) the form of (2.50) in Peskin's QFT book, and move the pole by seting \omega=p^0-E_p, p^0+E_p). In a word, the only physical point is the expression of Feyman propagator at first, and the choice of countor is just a way to represent \theta(t) or to identify two forms of Feyman propagator. do it.
|
||
星空浩淼 发表文章数: 799
|
Re: A note on i\epsilon prescription in QFT. [文章类型: 原创]
楼主写的算得上是正解
另一方面正如西门所说,例如计算推迟或超前传播子,取的围道与求feynman传播子时是不同的。 楼主提醒\epsilon^2=0时,可能说一句“把高阶无穷小取为零”更让人好理解。事实上,在讨论场的拉格朗日密度在某无穷小连续变换下不变时,常常就包含了默认取高阶无穷小为零。 我曾经有篇文章,涉及讨论场的拉格朗日密度在某无穷小连续变换下不变,结果审稿人认为拉格朗日密度的变分并不是恰好为零,因此不具备我说的那种对称性,把稿子枪毙了,审稿人就是犯了低级错误:拉格朗日密度的变分虽然不是恰好为零,但却是无穷小变换参数的高阶无穷小!因此我对此印象深刻。 One may view the world with the p-eye and one may view it with the q-eye but if one opens both eyes simultaneously then one gets crazy
|
||
dfj 发表文章数: 186
|
Re: A note on i\epsilon prescription in [文章类型: 原创]
大概楼主这篇文章也是针对在下的一个问题的回复吧。
对我来说,重要的就是要知道不同形式的传播子背后的物理含义; 知道物理含义之后,剩下的就是纯粹的技术性的数学问题了,比较好说。 楼主说得很清楚,多谢!
|
||
blackhole 发表文章数: 196
|
Re: A note on i\epsilon prescription in QFT. [文章类型: 原创]
重要的就是要知道不同形式的传播子背后的物理含义;
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 这个全在于各Green函数的原始定义形式,如楼主所说。 另外,针对楼主而言,\theta(t)的积分形式最好用e^{-i\omega t}(多个负号)表示。 这是因为,无论如何,四动量积分中所出现的e指数必须是平面波, 而平面波公认的约定是e^{ik.x-i\omega t}(k和x是三维矢量)。 我所见过的所有资料概莫能外。 这种选择与度规选择无关,但在不同的度规选择下有不同的表现形式。 平面波的这一约定其实直接跟量子力学的以下基本对应直接相关: -ið_x→p_x,ið_t→E(用了一个不恰当的符号来表示偏导数)
|
||
ular 发表文章数: 3
|
Re: A note on i\epsilon prescription in QFT. [文章类型: 原创]
The integral form of the \theta(t) is determined by how
to move the pole. As in my note, if you want to sum two integrals, you should turn \omega->-\omega, then move pole \omega=p_0-E_p for \theta(t). For \theta(-t)=\int e^{-i\omega t} /[2\pi i(\omega +i\epsilon)] with same choice of contour, we should move pole \omega=p_0+E_p. Plane wave has positive and negative frenquency components, only in quantuam physics, we always use its positive components, e^{-iEt} due to the identification of energy and frenquency and E is positive as assumption. do it.
|
||
blackhole 发表文章数: 196
|
Re: A note on i\epsilon prescription in QFT. [文章类型: 原创]
我的前一回复有些贸然。实际上,由于Feynman传播子的定义中含两项,而每项分别含\theta(t)和\theta(-t),故我的“最好”一说没有多大意义。但Feynman传播子的积分表达式中须出现Exp[-iEt]一点是对的。
中国是一个从上往下煽耳光,从下往上磕头的社会。
|
您尚未登陆 | 用户登陆 |