关于商映射的几点疑问

新用户注册 | 用户登陆 | 刷新
论坛嘉宾: 萍踪浪迹 gauge 季候风

veryapple


发表文章数: 7
内力值: 75/75
贡献度: 36
人气: 8

关于商映射的几点疑问 [文章类型: 原创]

什么样的商映射既不是开映射也不是闭映射?我觉得商映射既然是连续的,那么要么是开得要么是闭的,谁能帮忙举个例子?
还有如何用商映射得到环面,Clain瓶,射影平面,射影空间?其需要的等价条件是什么?
谢谢了先

xiangxiang

发表时间: 2007-10-03, 19:13:11 个人资料

青松


发表文章数: 31
内力值: 105/105
贡献度: 163
人气: 20

学术成员

Re: 关于商映射的几点疑问 [文章类型: 原创]

1. Let I=[-1,1], X={0,1}, f the characteristic function of [0,1] in I, endow with X the quotient topology, i.e. the topology {empty set, {0}, X}. It is easy to verify that f is a quetient map, but is neither open nor closed.

2. A quetient map f:X->Y is open(closed) provided that for each open(closed) subset B of X f^-1(f(B)) is also open(closed) in X.

3. I as above.
    I^2/~ is the torus, here ~ identifies (-1,y) with (1,y), and (x,-1) with (x,1).
    I^2/~ is the Klein bottle, here ~ identifies (-1,y) with (1,y), and (-x,-1) with (x,1).
    bd(I^n+1)/~ is the projective space of dimension n, here ~ identifies x with -x where x∈bd(I^n+1). If n=2, we get the projective plane.

Nicolas Bourbaki

发表时间: 2007-10-03, 20:48:57 个人资料
您尚未登陆 | 用户登陆