什么样的商映射既不是开映射也不是闭映射?我觉得商映射既然是连续的,那么要么是开得要么是闭的,谁能帮忙举个例子?
还有如何用商映射得到环面,Clain瓶,射影平面,射影空间?其需要的等价条件是什么?
谢谢了先
您的位置: 站长主页 -> 繁星客栈 -> 望月殿 -> 关于商映射的几点疑问 | November 21, 2024 |
关于商映射的几点疑问
论坛嘉宾: 萍踪浪迹 gauge 季候风 |
veryapple 发表文章数: 7
|
关于商映射的几点疑问 [文章类型: 原创]
什么样的商映射既不是开映射也不是闭映射?我觉得商映射既然是连续的,那么要么是开得要么是闭的,谁能帮忙举个例子?
还有如何用商映射得到环面,Clain瓶,射影平面,射影空间?其需要的等价条件是什么? 谢谢了先 xiangxiang
|
||
青松 发表文章数: 31
|
Re: 关于商映射的几点疑问 [文章类型: 原创]
1. Let I=[-1,1], X={0,1}, f the characteristic function of [0,1] in I, endow with X the quotient topology, i.e. the topology {empty set, {0}, X}. It is easy to verify that f is a quetient map, but is neither open nor closed.
2. A quetient map f:X->Y is open(closed) provided that for each open(closed) subset B of X f^-1(f(B)) is also open(closed) in X. 3. I as above. I^2/~ is the torus, here ~ identifies (-1,y) with (1,y), and (x,-1) with (x,1). I^2/~ is the Klein bottle, here ~ identifies (-1,y) with (1,y), and (-x,-1) with (x,1). bd(I^n+1)/~ is the projective space of dimension n, here ~ identifies x with -x where x∈bd(I^n+1). If n=2, we get the projective plane. Nicolas Bourbaki
|
您尚未登陆 | 用户登陆 |