|
喜欢本人文字的读者 >>> 欢迎选购本站电子书 <<<
手机版
Riemann 猜想漫谈
- 参考文献 -
- 卢昌海 -
-
J. Arias-de-Reyna,
X-Ray of Riemann's Zeta-Function.
-
A. Ash, R. Gross,
Fearless Symmetry,
(Princeton University Press, 2006).
-
N. Baas, C. F. Skau,
The lord of the numbers, Atle Selberg: On his life and mathematics,
Bull. Amer. Math. Soc. 45, 617–649, (2008).
-
E. T. Bell,
The Development of Mathematics,
(Dover Publications Inc., 1992).
-
M. V. Berry, J. P. Keating,
H=xp and the Riemann Zeros,
in Supersymmetry and Trace Formulae: Chaos and Disorder,
(Plenum Publishing Corporation, 1999).
-
M. V. Berry, J. P. Keating,
The Riemann Zeros and Eigenvalue Asymptotics,
SIAM Review, 41, No. 2, pp. 236-266, (1999).
-
E. Bombieri,
Problems of the Millennium: The Riemann Hypothesis.
-
P. Borwein, S. Choi, B. Rooney, A. Weirathmueller,
The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike,
(Springer, 2007).
-
D. Bump,
Zeros of the Zeta Function.
-
A. Connes,
Noncommutative geometry and the Riemann zeta function,
in Mathematics: frontiers and perspectives,
American Mathematical Society, pp. 35–54, 2000.
-
J. Derbyshire,
Prime Obsession
(Joseph Henry Press, 2003).
-
M. du Sautoy,
The Music of the Primes
(Harper Collins Publishers, 2003).
-
H. M. Edwards,
Riemann's Zeta Function
(Dover Publications, Inc., 2001).
-
S. M. Gonek,
Three Lectures on the Riemann Zeta-Function,
in Proceedings of the 2002 International Conference on Subjects Related to the Clay Problems,
Vol. 1, (Inst. of Pure and Applied Math., Chonbuk National University, Jeonju, Korea, 2002).
-
X. Gourdon,
The 1013 first zeros of the Riemann Zeta function,
and zeros computation at very large height (2004).
-
T. Guhr, A. Mueller-Groeling, H. A. Weidenmueller,
Random Matrix Theories in Quantum Physics: Common Concepts,
Phys. Rept., 299, pp. 189-425, (1998).
-
H. Cohen,
Number Theory II: Analytic and Modern Tools
(Springer, 2007).
-
R. Ile,
Introduction to the Weil Conjectures,
(2004).
-
A. Ivic,
The Riemann Zeta-Function: Theory and Applications
(Dover Publications, Inc., 2003).
-
A. A. Karatsuba, S. M. Voronin,
The Riemann Zeta-Function
(Walter De Gruyter Inc., 1992).
-
N. M. Katz, P. Sarnak,
Zeroes of Zeta Functions and Symmetry,
AMS, 36, Number 1, pp. 1-26, (1999).
-
M. Kline,
Mathematical Thought from Ancient to Modern Times
(Oxford University Press, 1972).
-
G. T. Kneebone, Mathematical Logic and the Foundations of Mathematics
(Dover Publications, Inc., 2001).
-
D. Laugwitz, Bernhard Riemann 1826-1866: Turning Points in the Conception of
Mathematics (Birkhäuser, 2008).
-
W. Narkiewicz, The Development of Prime Number Theory
(Springer-Verlag Berlin Heidelberg, 2000).
-
A. M. Odlyzko,
Primes, quantum chaos, and computers,
pp. 35-46 in Number Theory, National Research Council (1990).
-
A. M. Odlyzko,
On the distribution of spacings between zeros of the zeta function,
Math. Comp. 48, pp.273-308, (1987).
-
B. Osserman,
The Weil Conjecture.
-
D. Rockmore,
Chance in the Primes (Part III).
-
D. Rockmore,
Stalking the Riemann Hypothesis
(Pantheon Books, 2005).
-
K. Sabbagh,
The Riemann Hypothesis
(Farrar, Straus and Giroux, 2002).
-
N. C. Snaith,
Random Matrix Theory and Zeta Functions,
PhD Thesis, University of Bristol, (2000).
-
N. C. Snaith, P. J. Forrester, J.J.M. Verbaarschot,
Developments in Random Matrix Theory,
J.Phys. A36, R1, (2003).
-
J. Stopple,
A Primer of Analytic Number Theory
(Cambridge University Press, 2003).
-
E. C. Titchmarsh,
The Theory of the Riemann Zeta-Function
(Oxford University Press, 1987).
-
C. A. Tracy, H. Widom,
Universality of the distribution functions of random matrix theory,
in Statistical Physics on the Eve of the 21st Century
(World Scientific Pub., 1999).
-
C. A. Tracy, H. Widom,
Distribution Functions for Largest Eigenvalues and Their Applications,
in Proceedings of the International Congress of Mathematicians,
Vol. I, (Higher Education Press, Beijing, 2002).
-
F. Voloch,
Equations over Finite Fields,
(2001).
-
A. Weil,
The Apprenticeship of a Mathematician
(Birkhäuser Basel, 2002).
-
A. Weil (translated by Martin H. Krieger),
A 1940 Letter of André Weil on Analogy in Mathematics,
Notices of the AMS, Volume 52, Number 3, (2005).
-
B. H. Yandell,
The Honors Class
(A K Peters, Ltd., 2002).
-
M. R. Zirnbauer,
Symmetry Classes in Random Matrix Theory,
to appear in Encylopedia of Mathematical Physics
(Elsevier, 2005).
返回目录
https://www.changhai.org/
|
|