欢 迎 访 问 卢 昌 海 个 人 主 页

除了自己的无知,
我什么都不懂。

-苏格拉底

 
信 息
 
 
 
All English Contents
作品列表 | 电子图书
站长简介 | 常见问题
版权说明 | 电子邮箱
 
统 计
 
 
 
自 2008-02-01 以来
本文点击数
8,747
自 2008-02-01 以来
本站点击数
33,826,746
昨日点击数 2,590
今日点击数 2,853

喜欢本人文字的读者
>>> 欢迎选购本站电子书 <<<

Riemann 猜想漫谈

- 参考文献 -

- 卢昌海 -

  1. J. Arias-de-Reyna, X-Ray of Riemann's Zeta-Function.
  2. A. Ash, R. Gross, Fearless Symmetry, (Princeton University Press, 2006).
  3. N. Baas, C. F. Skau, The lord of the numbers, Atle Selberg: On his life and mathematics, Bull. Amer. Math. Soc. 45, 617–649, (2008).
  4. E. T. Bell, The Development of Mathematics, (Dover Publications Inc., 1992).
  5. M. V. Berry, J. P. Keating, H=xp and the Riemann Zeros, in Supersymmetry and Trace Formulae: Chaos and Disorder, (Plenum Publishing Corporation, 1999).
  6. M. V. Berry, J. P. Keating, The Riemann Zeros and Eigenvalue Asymptotics, SIAM Review, 41, No. 2, pp. 236-266, (1999).
  7. E. Bombieri, Problems of the Millennium: The Riemann Hypothesis.
  8. P. Borwein, S. Choi, B. Rooney, A. Weirathmueller, The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike, (Springer, 2007).
  9. D. Bump, Zeros of the Zeta Function.
  10. A. Connes, Noncommutative geometry and the Riemann zeta function, in Mathematics: frontiers and perspectives, American Mathematical Society, pp. 35–54, 2000.
  11. J. Derbyshire, Prime Obsession (Joseph Henry Press, 2003).
  12. M. du Sautoy, The Music of the Primes (Harper Collins Publishers, 2003).
  13. H. M. Edwards, Riemann's Zeta Function (Dover Publications, Inc., 2001).
  14. S. M. Gonek, Three Lectures on the Riemann Zeta-Function, in Proceedings of the 2002 International Conference on Subjects Related to the Clay Problems, Vol. 1, (Inst. of Pure and Applied Math., Chonbuk National University, Jeonju, Korea, 2002).
  15. X. Gourdon, The 1013 first zeros of the Riemann Zeta function, and zeros computation at very large height (2004).
  16. T. Guhr, A. Mueller-Groeling, H. A. Weidenmueller, Random Matrix Theories in Quantum Physics: Common Concepts, Phys. Rept., 299, pp. 189-425, (1998).
  17. H. Cohen, Number Theory II: Analytic and Modern Tools (Springer, 2007).
  18. R. Ile, Introduction to the Weil Conjectures, (2004).
  19. A. Ivic, The Riemann Zeta-Function: Theory and Applications (Dover Publications, Inc., 2003).
  20. A. A. Karatsuba, S. M. Voronin, The Riemann Zeta-Function (Walter De Gruyter Inc., 1992).
  21. N. M. Katz, P. Sarnak, Zeroes of Zeta Functions and Symmetry, AMS, 36, Number 1, pp. 1-26, (1999).
  22. M. Kline, Mathematical Thought from Ancient to Modern Times (Oxford University Press, 1972).
  23. G. T. Kneebone, Mathematical Logic and the Foundations of Mathematics (Dover Publications, Inc., 2001).
  24. D. Laugwitz, Bernhard Riemann 1826-1866: Turning Points in the Conception of Mathematics (Birkhäuser, 2008).
  25. W. Narkiewicz, The Development of Prime Number Theory (Springer-Verlag Berlin Heidelberg, 2000).
  26. A. M. Odlyzko, Primes, quantum chaos, and computers, pp. 35-46 in Number Theory, National Research Council (1990).
  27. A. M. Odlyzko, On the distribution of spacings between zeros of the zeta function, Math. Comp. 48, pp.273-308, (1987).
  28. B. Osserman, The Weil Conjecture.
  29. D. Rockmore, Chance in the Primes (Part III).
  30. D. Rockmore, Stalking the Riemann Hypothesis (Pantheon Books, 2005).
  31. K. Sabbagh, The Riemann Hypothesis (Farrar, Straus and Giroux, 2002).
  32. N. C. Snaith, Random Matrix Theory and Zeta Functions, PhD Thesis, University of Bristol, (2000).
  33. N. C. Snaith, P. J. Forrester, J.J.M. Verbaarschot, Developments in Random Matrix Theory, J.Phys. A36, R1, (2003).
  34. J. Stopple, A Primer of Analytic Number Theory (Cambridge University Press, 2003).
  35. E. C. Titchmarsh, The Theory of the Riemann Zeta-Function (Oxford University Press, 1987).
  36. C. A. Tracy, H. Widom, Universality of the distribution functions of random matrix theory, in Statistical Physics on the Eve of the 21st Century (World Scientific Pub., 1999).
  37. C. A. Tracy, H. Widom, Distribution Functions for Largest Eigenvalues and Their Applications, in Proceedings of the International Congress of Mathematicians, Vol. I, (Higher Education Press, Beijing, 2002).
  38. F. Voloch, Equations over Finite Fields, (2001).
  39. A. Weil, The Apprenticeship of a Mathematician (Birkhäuser Basel, 2002).
  40. A. Weil (translated by Martin H. Krieger), A 1940 Letter of André Weil on Analogy in Mathematics, Notices of the AMS, Volume 52, Number 3, (2005).
  41. B. H. Yandell, The Honors Class (A K Peters, Ltd., 2002).
  42. M. R. Zirnbauer, Symmetry Classes in Random Matrix Theory, to appear in Encylopedia of Mathematical Physics (Elsevier, 2005).

返回目录