欢 迎 访 问 卢 昌 海 个 人 主 页

除了自己的无知,
我什么都不懂。

-苏格拉底

 
信 息
 
 
 
All English Contents
作品列表 | 电子图书
站长简介 | 常见问题
版权说明 | 电子邮箱
 
统 计
 
 
 
自 2016-05-06 以来
本文点击数
39,434
自 2008-02-01 以来
本站点击数
34,132,261
昨日点击数 9,389
今日点击数 393
 
备 注
 
 
 

本文发表于《现代物理知识》2016 年第 5 期 (中国科学院高能物理研究所)。

电子书 “太阳系三部曲” 已制作完成
>>> 欢迎选购 <<<

最美丽的行星——土星

- 经典行星的故事 -

- 卢昌海 -

上一篇 | 返回目录 <<

土星
土星

一. 能 “浮” 在水上的行星

美国天文学家泰森 (Neil deGrasse Tyson) 写过一本自传, 叫做《天空不是极限》(The Sky Is Not The Limit)。 在其中, 泰森提到他 14 岁那年有幸与很多科学家同船前往非洲西北海岸观看日全食。 在船上举办的趣味竞答中, 泰森因答出一道关键的题目而大大露了脸。 那道题目是: 除美丽的光环外, 土星还有什么特征与其他行星截然不同? 答案是: 土星是太阳系里唯一可以浮在水上的行星——因为它的平均密度不到 0.7 克/厘米3, 比水还小。

我读到泰森的这段回忆时不禁有些扼腕, 因为我在他那个年龄时也是知道这一点的, 可惜却不曾有那样的机会来 “显摆”。 不过, 咱们这篇土星故事倒是可以从土星的这一特点开始谈起。

关于这一特点, 其实应该指出的是: 所谓土星 “可以浮在水上” 只是形象描述, 便于让人对土星的平均密度比水还小这一特点有一个深刻印象, 事实上却是不成立的。 读者也许会说, 那是当然啦, 因为根本就没有那么大的 “海”, 能容得下土星嘛。 这当然也没说错。 不过, 土星之不能浮在水上并非只是因为没有那么大的 “海”, 而是原则上就不可能。 为什么呢? 因为当普通物质——比如水——的数量积累到能与巨大的土星相提并论时——甚至远远不到这一数量时, 引力就将成为主宰一切的力量。 那些本质上是由原子或分子之间的其他相互作用产生的, 在日常尺度上相当 “顽固” 的宏观物性在引力面前将会 “一败涂地”, 遭到彻底改变。

引力的这种主宰作用我们其实早就见识过了, 比如在 上一篇 介绍木星时我们就已提到过, 像氢那样的所谓气体在木星引力产生的巨大压强作用下可以变为液体, 乃至成为 “液态金属”。 而所有大型天体共有的接近球形的形状则从另一个侧面告诉我们, 在巨大的引力面前, 组成大型天体的任何物质本质上都是 “软” 的, 只能任由引力将之 “揉捏” 成天然的形状——球形[注一]。 知道了这一点, 就可以很清楚地推断出, 倘有一个以体积而论容得下土星的 “海”, 那么不仅其深处的物态将显著不同于普通的液态水, 而且土星也决不可能浮在 “海” 上, 而是会 “融化” 到 “海” 里, 两者共同组成一个接近球形的新天体。 这是引力所能允许的唯一结果。

谈完了这段插曲, 我们正式介绍一下土星。

跟木星一样, 土星也是一个气态巨行星, 它的质量约为木星质量的 30% (或相当于地球质量的 95 倍左右), 体积约为木星体积的 68% (或相当于地球体积的 764 倍左右), 两个数据都在太阳系已知行星中位居第二。 土星的这两个数据给我们提出了一个问题, 那就是: 土星和木星在块头上的差别为什么远不像质量上的差别那么悬殊? 这个问题的答案某些读者或许猜到了, 那就是我们在介绍类地行星时曾经提到过的, 行星的质量越大, 引力就越强, 自重造成的压缩作用也就越显著。 由于气体的压缩性远大于固体, 因此虽然气态巨行星并非整体气态, 自重造成的压缩作用仍比类地行星的显著得多。 事实上, 某些模型计算显示, 气态巨行星存在一个与元素组成有关, 但与总质量几乎无关的特征半径。 对于元素组成像土星和木星那样的气态巨行星来说, 这个特征半径约为 70,000 公里, 很接近木星的平均半径, 这是土星和木星在块头上的差别远不像质量上的差别那么悬殊的主要原因[注二]

同样跟木星一样, 土星虽是气态巨行星, 其实也只有外层物质才是真正气态的, 无论以相对质量还是相对体积而论, 气态部分实际上都并不大。 气态巨行星跟类地行星的最大不同之一, 与其说是气态与固态之别, 不如说是前者不像后者那样存在一个可以明确指认的固态 “表面”, 因为气态巨行星的物质状态是自外而内渐变的。

具体地说, 土星物质自外而内的渐变是这样的——当然也主要是基于模型分析: 表面以下约 1,000 公里处, 土星物质将由气态转变为以液态氢为主的液态。 这个深度与木星物质由气态转为液态的深度几乎一样, 这一点可能会让细心的读者感到奇怪, 因为土星的质量远小于木星, 引力产生的压强也小于木星, 为何物质状态会在几乎同样的深度上由气态转为液态呢? 这是因为物质的状态跟温度也有密切关系, 土星由于离太阳更远 (平均距离约为 9.5 天文单位, 比木星离太阳的 5.2 天文单位远了近一倍), 相应地, 同等深度的壳层内的土星物质的平均温度要比木星物质的平均温度更低, 从而更容易变成液态, 这一因素恰巧抵消了压强的不足。 再往下, 在深度约 15,000 公里处, 液态氢进一步变成了液态金属氢。 而最终, 在一个半径约 25,000 公里的核心区域里, 聚集了土星物质里的重元素, 数量与木星的相比可能略小, 但仍比整个地球的质量还大一个数量级左右。

由于离太阳更远, 土星云层的平均温度也比相应的木星云层的平均温度更低, 这种温度差别产生了一个很显著的观测效应, 那就是形成了一个几乎覆盖整个土星的氨冰构成的高空云层。 这个云层不仅给了土星一个貌似 “文静” 的模样, 而且也是土星那淡黄色基本色调的主要来源。 不过, 这个貌似 “文静” 的模样纯属表面现象, 在它下面的真正的土星大气运动, 是狂暴程度与木星大气运动相比有过之而无不及的——有时甚至会撕裂氨冰云层而露出峥嵘。 在对土星有些基本了解之后, 这一点其实是顺理成章的, 因为造成木星大气运动狂暴的主要原因——星体深处的热量造成的对流以及星体的快速自转——对土星来说也是一个都不缺的。

与木星高度相似, 土星向外辐射的能量也比它从太阳吸收的能量更多, 且多出的部分也相当显著 (比来自太阳的总能量更多)。 跟木星不同的是, 土星由于引力较弱, 不太可能像木星那样以自身的缓慢收缩作为额外能量的全部来源 (虽然那本身也只是假设)。 那么, 土星的额外能量从何而来呢? 这个问题在很长一段时间里难倒了科学家们。 假如这个问题得不到正面解决, 留给我们的将是一个很糟糕的假设, 那就是假设土星远比太阳系的其他行星更年轻。 这个假设之所以会被提出, 是因为所有行星在形成之初都处于高温状态——因为都是无数次大碰撞的产物, 然后慢慢冷却。 土星不够 “冷” 的一种显而易见的可能性就是它形成于不那么遥远的过去, 从而残留了更多的大碰撞余温。 但估算表明, 要想用这个假设解释土星的额外辐射, 土星的年龄将只有 25 亿岁——比太阳系其他行星年轻了整整 20 亿年! 从目前公认的太阳系演化理论的角度讲, 这个假设是相当荒谬的。 但如果不接受这个荒谬假设, 就必须为土星的额外能量找到一种新来源。

到底什么机制可以为土星的额外能量找到新来源呢? 最近科学家们在这方面有可能取得了一些进展, 他们提出了一种被称为 “氦雨” (helium rain) 的机制。 按照这种机制, 土星内部的液氦会像下雨一样落向土星的中心, 在下落过程中将引力势能转变为热能。 模拟计算显示, 这种机制不仅具有一定的物理可行性, 与观测到的土星额外辐射相比也有不错的吻合, 因而是颇有希望的。 有趣的是, 这种机制从某种意义上讲跟木星的缓慢收缩一样, 也是一种早年曾被用来解释太阳的能量来源, 却不幸遭到淘汰的机制——当然细节上是完全不同的, 因为在后者中落向太阳中心的不是 “氦雨” 而是陨星[注三]。 这些在解释太阳的能量来源时遭到淘汰的机制在行星世界里浴火重生不是偶然的, 宇宙的浩瀚提供了很大的机会, 使得很多不违背物理定律的机制都有可能在某个角落里找到让自己亮相的舞台。

同样与木星高度相似, 土星也是一个自转很快的行星。 这个太阳系行星里的 “千年老二” 不仅质量和体积排行 “老二”, 自转周期之短也同样是 “老二”——略多于 10 小时, 与木星相近而远比其他行星的短。 由于自转之快接近木星, 密度和引力却远低于木星, 土星因自转造成的形变比木星的更为显著: 赤道直径比两极直径长了近 12,000 公里 (相应的扁率约为 9.8%), 几乎相当于地球的直径。 除自转很快外, 土星跟木星一样, 也存在 “较差自转” 的现象, 而且比木星的更显著, 赤道附近区域和两极附近区域的自转周期约为 10 小时 14 分钟, 与其余部分相比短了约 25 分钟, 远比木星 “较差自转” 所涉及的 5 分钟来得大, 这是土星大气运动甚至比木星大气运动更为狂暴的重要原因。

“卡西尼” 号拍摄的土星 “六边形”
“卡西尼” 号拍摄的土星 “六边形”

从细节上讲, 土星大气中虽没有像木星大红斑那样引人注目的结构, 却也有自己的 “独门” 奇观: 一个位于北极区域的 “六边形” (hexagon)。 这个 “六边形” 是土星云层里的一个巨型图案, 边长将近 13,800 公里, 以面积而论足可放下地球而绰绰有余。 由于所处位置等因素的影响, 这个 “六边形” 巨型图案从地球上直接观测是比较困难的——虽然在知道其存在之后也并非不能, 因此直到上世纪 80 年代才在对 “旅行者” 系列飞船所拍摄的相片作技术分析时被发现, 此后则分别得到了地球上的直接观测, 以及 “卡西尼号” (Cassini) 土星探测器所拍摄的相片的证实。

土星上的 “六边形” 巨型图案是如何形成的呢? 科学家们也作了探讨。 在旋转流体中出现多边形——尤其是六边形——图案的本身是算不上神秘的, 因为那是实验室里就能再现的东西 (比如桶中的旋转流体就能产生出那样的图案)。 但实验室里的那些多边形图案能否用来说明土星上的 “六边形” 则是尚无定论的, 因为土星云层的环境跟实验室里产生多边形图案的环境有着不小的差别——比如土星云层里并不存在 “桶”。 不过经过很多科学家多年的研究, 有些模拟土星云层环境的计算已经可以得出与土星上的 “六边形” 相近的结果, 虽不能算一锤定音, 却给了人们很大的希望。

二. 土星的光环和卫星

本文已收录于电子书《经典行星的故事》
以上预览约为本文内容之 45%
欲读剩余部分
>>>>>> 请购买该书 <<<<<<

>> 返回目录

注释

  1. 事实上, 所有直径在数百公里以上的天体——包括几个所谓的 “小行星”——的形状都是接近球形的, 因此 “大型” 的门槛并不高。 当然, 这里我们忽略了天体自转等 “准引力” 因素造成的大范围形状偏离球形的现象, 但这并不影响我们的叙述逻辑。
  2. 当然, 特征半径的存在只是说明气态巨行星的半径变化范围较窄, 对质量的依赖较不敏感, 而绝不意味着气态巨行星的半径与质量无关。 更何况不同气态巨行星的元素组成也不会完全相同, 因此土星的半径毕竟还是要比木星的略小, 而质量比木星更大的气态巨行星的半径通常也会略大。 不过模型计算表明, 元素组成与木星相似的气态巨行星的最大半径也不过就是 80,000 公里左右, 那种气态巨行星的质量约为木星质量的 4-5 倍。 质量继续增大时, 气态巨行星的半径反而会略微缩小。
  3. 这一机制因此而被称为 “陨星说”, 对这一机制感兴趣的读者可参阅拙作 太阳的故事第 8 节。 另外需要说明的是, 新近的研究显示 “氦雨” 很可能在木星上也存在, 不过土星的低温条件更有利于它的产生。
  4. 值得一提的是, 伽利略虽未能窥视出土星 “耳朵” 的真面目, 对它的了解却也并非泛泛。 在给一位朋友的私人信件中, 他预言了土星 “耳朵” 的下一次消失将不会早于 1626 年。 他那封信于 1622 年被他朋友所公布, 而土星 “耳朵” 确实在 1626 年才再次消失。 不过, 伽利略并未记述过自己做出此种预言的理由, 也并无迹象表明那是因为他知道或猜到了土星 “耳朵” 乃是土星光环。
  5. 这个缝隙因此而被称为了 “卡西尼缝” (Cassini Division)。 前面提到的土星探测器 “卡西尼号” (Cassini) 也是因卡西尼而命名的。
  6. 确切地讲, 麦克斯韦所排除的是土星光环为不可压缩流体的可能性。 在麦克斯韦之后, 苏联女数学家柯瓦列夫斯卡娅 (Sofia Kovalevskaya) 等人对土星光环为液体的可能性作了进一步研究, 同样作出了排除的结论。
  7. 洛希研究并提出洛希极限的时间比麦克斯韦研究土星光环更早, 不过却并未作出与麦克斯韦相似的发现, 因为他所猜测的土星光环是液态卫星在土星的引力潮汐作用下解体形成的。
  8. 土星光环被伽利略发现之后, 在长达三个半世纪的时间里曾经是太阳系唯一的行星光环, 不过自 1977 年之后, 天文学家们先后在天王星、 木星及海王星周围也发现了光环, 从而使得行星光环成了太阳系气态巨行星 “人手一套” 的东西, 不过跟土星光环相比, 其他那些光环都黯淡得多, 所含物质的总量也少了好几个数量级。
  9. 当然, 跟木卫三的情形相似, 由于水星的密度——如我们在 第一篇 中介绍过的——超高, 以质量而论要比土卫六大得多。
  10. 感兴趣的读者不妨思考这样一个问题: 土卫六的引力远比地球的弱, 表面重力加速度仅为地球表面重力加速度的 1/7 左右, 虽然大气总质量比地球的高出近 20%, 却远不足以抵消引力的不足, 为何表面气压没有远远小于地球的表面气压?
  11. 对天王星和海王星的发现感兴趣的读者可参阅拙作 寻找太阳系的疆界

站长往年同日 (5 月 6 日) 发表的作品

站长近期发表的作品

网友讨论选录

  • 网友: blackhole   (发表于 2016-05-06)

    很奇怪那个字谜是什么。 一查 anagram, 发现是 “变位词; (变换或颠倒字母顺序而成另一词的) 回文构词法”, 这才了解所说的字谜的大概含义。 但必须指出, 不查字典, 我完全没想到 “字谜” 究竟是什么意思, 还以为是 “复习为羽” 这种字谜。

  • 卢昌海   (发表于 2016-05-06)

    那个 “字谜” 的谜面是 “smaismrmilmepoetaleumibunenugttauiras” 还原翻译后的含义为: “我发现最遥远的行星具有一种三重形式” (自身加两个 “耳朵”)。

  • 卢昌海   (发表于 2016-05-06)

    这篇文章发布后第一个 24 小时的点击数居然达到以往其他文章同期点击数的两倍, 真是意外。

  • 网友: labniz   (发表于 2016-05-06)

    好文章, 这篇感觉比前面的那几篇更精彩。

  • 网友: markzhang   (发表于 2016-05-13)

    非常精彩啊! 期待余下的两颗星星~

  • 卢昌海   (发表于 2016-05-13)

    谢谢。 这个系列因写作速度赶不上领域本身的发展速度, 为避免写到后面前面已经陈旧的局面, 已决定缩减为 “经典行星的故事”, 因此到土星这里就结束了 (倒是正好与拙作《上下百亿年: 太阳的故事》及《那颗星星不在星图上: 寻找太阳系的疆界》相衔接)。 我将撰写一篇后记, 若无意外, 本系列将由科学出版社出版。

本文的讨论期限已过, 如果您仍想讨论本文,
请在每个月前七天的 “读者周” 期间前来讨论。

>> 查阅目前尚在讨论期限内的文章 <<